• Title/Summary/Keyword: 대수함수율

Search Result 29, Processing Time 0.027 seconds

Estimation of Distributed Groundwater Recharge in Mihocheon Watershed (미호천 유역의 분포형 지하수 함양량 산정)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo;Won, Yoo-Seung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.698-701
    • /
    • 2007
  • 지하수 개발가능량 산정을 위한 함양량의 평가는 수문계의 물리적인 형태나 함수층의 수리성 분석 및 수직인 지질분포를 파악하여 어떤 조건하에서 물이 유입 유출되는가를 파악한 후에만 가능하다. 또한 지하수계의 물리적인 형태를 이해함으로써 조사지역의 지표수계나 지하수계의 양계를 통해서 흐르는 물의 양을 결정짓는 물수지 분석이 수행되어야 한다. 이에 따라 강수량, 증발산량, 지하수 유출량, 지표유출량 그리고 하천유출량 등을 수문학적으로 고려해야만 한다. 본 연구는 지표수-지하수 결합모형을 도입하여 분포형 지하수 함양량의 시공간적인 변동성을 파악하는 데 그 목적이 있다. 이를 위해 지표수-지하수 결합모형인 SWAT-K모형을 미호천 유역에 적용하였으며, 지표수의 총유출량과 지하수위의 공간분포자료를 이용하여 검정과 검증을 수행하였다. 전체유역에 대한 연평균 함양량은 수문총량의 약 19%인 것으로 나타났다. 1999년${\sim}$2004년까지의 소유역별 연간 함양량 결과를 월별로 나타냈으며, HRU(Hydrologic Response Unit)별 함양량의 공간분포를 통해 월별, 계절별 특성을 살펴볼 수 있었다. 소유역 모두 강수가 집중하는 7-9월에 걸쳐 많은 함양이 이루어지며 $1{\sim}3$월에는 상대적으로 함양이 적은 것을 볼 수 있다. 월함양량의 경우 최대 약200mm범위내에서 유역의 토지이용 및 토양특성, 경사등에 따라 매우 비균질하게 분포하는 것을 확인할 수 있었다. 이와같은 함양량의 시공간적 불균일성으로 인해 지하수 관리방안은 소유역별 함양특성을 반영해야 할 것으로 판단된다.의 종분산지수가 일반적인 자연대수층에 비해 9.1배 정도 높다는 것을 의미한다. 이는 시험대수층의 투수성이 매우 높아 염소이온의 용질이송이 매우 빠르게 발생되었기 때문이다. 본 연구에서 추정된 종분산지수를 Gelhar et al.(1992)의 연구 결과와 비교 분석한 결과에서도 시험규모에 비해 매우 높은 수리분산이 발생된 것으로 나타났다. 그리고 염소이온의 확산면적을 추정하기 위해, 수렴흐름 추적자시험에 의한 종분산지수와 시험대수층의 평균선형유속을 이용하여 종분산계수를 구하였다. 현장에서 수행된 양수시험에 의한 평균선형유속 22.44 m/day와 평균 종분산지수 0.4155 m를 적용하여 산정된 종분산계수는 $9.32\;m^2/day$이었다. 따라서, 시험부지 내 충적층에서 일정한 양수율$(2,500\;m^3/day)$로 지하수를 개발할 시에 양수정 주변지역으로 유입되는 염소이온의 확산면적은 1일 $9.32\;m^2$ 정도일 것으로 나타났다.적인 $OH{\cdot}$ 의 생성은 ascorbate가 조직손상에 관여할 가능성을 시사하였다.었다. 정확한 예측치를 얻기 위하여 불균질 조직이 조사야에 포함되는 경우 보정이 요구되며, 골반의 경우 골 조직의 보정이 중요한 요인임을 알 수 있었다. 이를 위하여 불균질 조직에 대한 정확한 정보가 요구되며, 이는 CT 영상을 이용하는 것이 크게 도움이 되리라 생각된다.전시 슬러지층과 상등액의 온도차를 측정하여 대사열량의 발생량을 측정하고 슬러지의 활성을 측정할 수 있는 방법을 개발하였다.enin과 Rhaponticin

  • PDF

A Simulation Study on Capacity Planning in Reentrant Hybrid Flowshops (재투입이 존재하는 혼합흐름공정의 용량계획에 관한 시뮬레이션 연구)

  • Lee, Geun-Cheol;Hong, Jung Man;Kim, Jung-Ug;Choi, Seong-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • In this study, we consider a capacity planning problem of reentrant hybrid flowshops. High-tech electronic products such as semiconductor or TFT-LCD, are produced from manufacturing systems which can be considered as reentrant hybrid flowshops. In the considered capacity planning problem, we determine the number of machines at each stage in the manufacturing system. We introduce criteria indicating which stage needs additional machines or which stage needs reduction of machines considering the characteristics of the product types and the manufacturing system. The objective function of the problem is maximizing throughput rate of the system, of which values are obtained from the simulation model depicting the hybrid flowshops. The performance of the proposed methods were evaluated through a series of computational experiments. The simulation model was also used for conducting the comparison experiments among the proposed method and benchmarks.

The Analysis of Efficiency and Productivity in the Korean and Japanese Railways: A Stochastic Cost Frontier Approach (확률적 비용변경 접근법을 이용한 한국과 일본 철도산업의 효율성과 생산성 분석)

  • Park, Jin-Gyeong;Kim, Seong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.141-157
    • /
    • 2007
  • This paper evaluates the effects of privatization and deregulation on the firm-specific efficiency and total factor productivity (TFP) growth in the Korean and Japanese railways. Using a stochastic frontier approach and a generalized translog functional form, the paper specifies the equation system consisting of a multiproduct variable cost function and input share equations which is estimated with Zellner's iterative seemingly unrelated regression and the corrected least squares method. The Korean and Japanese railway firms are assumed to produce three outputs (Shinkansen passenger-kilometers, incumbent railway passenger-kilometers, ton-kilometers of freight) using three input factors (labor, fuel, maintenance and rolling stock). A monetary value of the ways and fixed installations held by the railroad firm is also included as a quasi-fixed input. The empirical results indicate that the average estimate of cost inefficiency is 2.57% for the total sample and on the average, JNR and JR Kyushu are found to be worst efficient while the most efficient railway firm in the sample is JR West. Also the cost efficiency levels of seven JRs have been improved after the reform and privatization of JNR. The findings also indicate that TFP growth of the privately-owned JRs are higher than those of the government-owned KNR and JNR. Three-island JRs and JR Freight have slightly higher TFP growth than Honshu JRs as well. Thus, the results suggest that managerial autonomy and increased competition via deregulation have improved efficiency and TFP growth.

Effects of Crack Velocity on Fracture Properties of Modified S-FPZ Model (수정 특이-파괴진행대이론의 파괴특성에 대한 균열속도의 영향)

  • Yon Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.511-520
    • /
    • 2004
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}$ ( w ) for fracture process zone (FPZ) development. The $f_{ccs}$( w ) relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The variation of strain energy release rate with crack extension can explain theoretically the micro-cracking, micro-crack localization and full development of the FPZ in concrete.

Development of Backfill Materials for Underground Power Cables Considering Thermal Effect (열특성 효과를 고려한 지중송전관로용 되메움재 개발)

  • Lee Dae-Soo;Kim Dae-Hong;Hong Sung-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.41-52
    • /
    • 2005
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need fur cable backfill materials that can maintain a low thermal resistivity even while subjected to high temperatures for prolonged periods. Temperatures greater than $50^{\circ}C\;to\;60^{\circ}C$ may lead to breakdown of cable insulation and thermal runaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aimed at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. Tests were carried out for Dongrim river sand, a relatively uniform sand of very high thermal resistivity, $50^{\circ}C-cm/watt\;at\;10\%$ water content, $260^{\circ}C-cnuwatt$ when dry, and Jinsan granite screenings, and D-2 (sand and granite screenings mixture), E-1 (rubble and granite screenings mixture), a well-graded materials with low thermal resistivity, about $35^{\circ}C-cm/watt$ when at 10 percent water content, $100^{\circ}C-cm/watt$ when dry. Based on this research, 3 types of backfill materials were suggested for improved materials with low thermal resistivity and the applicability was assessed through field tests.

Relationships between Topological Structures of Traffic Flows on the Subway Networks and Land Use Patterns in the Metropolitan Seoul (수도권 지하철망 상 통행흐름의 위상학적 구조와 토지이용의 관계)

  • Lee, Keum-Sook;Hong, Ji-Yeon;Min, Hee-Hwa;Park, Jong-Soo
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.427-443
    • /
    • 2007
  • The purpose of this study is to investigate spacio-temporal structures of traffic flows on the subway network in the Metropolitan Seoul, and the relationships between topological structures of traffic flows and land use patterns. In particular we analyze in the topological structures of traffic flows on the subway network in time dimension as well as in spatial dimension. For the purpose, this study utilizes data mining techniques to the one day T-card transaction data of the last four years, which has developed for exploring the characteristics of traffic flows from large scale trip-transaction databases. The topological structures of traffic flows on the subway network has changed considerably during the last four years. The volumes of traffic flows, the travel time and stops per trip have increased until 2006 and decreased again in 2007. The results are visualized by utilizing GIS and analyzed, and thus the spatial patterns of traffic flows are analyzed. The spatial distribution patterns of trip origins and destinations show substantial differences among time zones during a day. We analyze the relationships between traffic flows at subway stops and the geographical variables reflecting land use around them. We obtain 6 log-linear functions from stepwise multiple regression analysis. We test multicollinearity among the variables and autocollelation for the residuals.

  • PDF

The Study on New Radiating Structure with Multi-Layered Two-Dimensional Metallic Disk Array for Shaping flat-Topped Element Pattern (구형 빔 패턴 형성을 위한 다층 이차원 원형 도체 배열을 갖는 새로운 방사 구조에 대한 연구)

  • 엄순영;스코벨레프;전순익;최재익;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.667-678
    • /
    • 2002
  • In this paper, a new radiating structure with a multi-layered two-dimensional metallic disk array was proposed for shaping the flat-topped element pattern. It is an infinite periodic planar array structure with metallic disks finitely stacked above the radiating circular waveguide apertures. The theoretical analysis was in detail performed using rigid full-wave analysis, and was based on modal representations for the fields in the partial regions of the array structure and for the currents on the metallic disks. The final system of linear algebraic equations was derived using the orthogonal property of vector wave functions, mode-matching method, boundary conditions and Galerkin's method, and also their unknown modal coefficients needed for calculation of the array characteristics were determined by Gauss elimination method. The application of the algorithm was demonstrated in an array design for shaping the flat-topped element patterns of $\pm$20$^{\circ}$ beam width in Ka-band. The optimal design parameters normalized by a wavelength for general applications are presented, which are obtained through optimization process on the basis of simulation and design experience. A Ka-band experimental breadboard with symmetric nineteen elements was fabricated to compare simulation results with experimental results. The metallic disks array structure stacked above the radiating circular waveguide apertures was realized using ion-beam deposition method on thin polymer films. It was shown that the calculated and measured element patterns of the breadboard were in very close agreement within the beam scanning range. The result analysis for side lobe and grating lobe was done, and also a blindness phenomenon was discussed, which may cause by multi-layered metallic disk structure at the broadside. Input VSWR of the breadboard was less than 1.14, and its gains measured at 29.0 GHz. 29.5 GHz and 30 GHz were 10.2 dB, 10.0 dB and 10.7 dB, respectively. The experimental and simulation results showed that the proposed multi-layered metallic disk array structure could shape the efficient flat-topped element pattern.

Effects of Soil Aggregate Stability and Wettability on Infiltration and Evaporation (토양입단(土壤粒團)의 안정성(安定性)과 친수성(親水性)이 수분침투(水分浸透) 및 증발(蒸發)에 미치는 영향(影響))

  • Jo, In-Sang;Cho, Seong-Jin;Verplanke, H.;Hartmann, R.;De Boodt, M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.121-127
    • /
    • 1985
  • This study was designed to gain practical data on the use of soil conditioners for more efficient water managements and to establish the optimum levels of structural properties for soil conditioning. A sandy loam and a silt loam soil were each treated with two different soil conditioners, hydrophobic Bitumen or hydrophilic Uresol. The perspex tube 34 cm long were packed homogeneously with air dried soil up to 2 cm below the top, then covered over 2 cm of treated or untreated aggregates. The infiltration rate into the soil columns was measured under simulated rainfall condition. The evaporation study was carried out in the wind tunnel, and the changes of soil moisture distribution of the columns following and during the evaporation were determined by a gamma ray scanner. The infiltration rate of water into the soil column was increased to 18.7-50.8% by the Uresol treatment but it was decreased to less than 25% of control by the Bitumen treatment. Evaporation was decreased to 22.0-68.1% by the Bitumen treatment and to 38.7-68.4% by the Uresol treatment. The water use efficiency of Uresol treated column was increased to more than twice as much as that of untreated soil. Aggregate stability and wetting angle were related to water infiltration and evaporation. A positive and highly significant logarismic relationship was found between the infiltration rate and stability index-wetting angle, evaporation rate and instability index-wetting angle. It was considered that the structural stability is more important than wetting angle. This is true because the structural stability is always positively correlated to water saving, however wettability is positively correlated to the infiltration, and negatively correlated to water saving during the evaporation.

  • PDF

Modeling of Estimating Soil Moisture, Evapotranspiration and Yield of Chinese Cabbages from Meteorological Data at Different Growth Stages (기상자료(氣象資料)에 의(依)한 배추 생육시기별(生育時期別) 토양수분(土壤水分), 증발산량(蒸發散量) 및 수량(收量)의 추정모형(推定模型))

  • Im, Jeong-Nam;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.386-408
    • /
    • 1988
  • A study was conducted to develop a model for estimating evapotranspiration and yield of Chinese cabbages from meteorological factors from 1981 to 1986 in Suweon, Korea. Lysimeters with water table maintained at 50cm depth were used to measure the potential evapotranspiration and the maximum evapotranspiration in situ. The actual evapotranspiration and the yield were measured in the field plots irrigated with different soil moisture regimes of -0.2, -0.5, and -1.0 bars, respectively. The soil water content throughout the profile was monitored by a neutron moisture depth gauge and the soil water potentials were measured using gypsum block and tensiometer. The fresh weight of Chinese cabbages at harvest was measured as yield. The data collected in situ were analyzed to obtain parameters related to modeling. The results were summarized as followings: 1. The 5-year mean of potential evapotranspiration (PET) gradually increased from 2.38 mm/day in early April to 3.98 mm/day in mid-June, and thereafter, decreased to 1.06 mm/day in mid-November. The estimated PET by Penman, Radiation or Blanney-Criddle methods were overestimated in comparison with the measured PET, while those by Pan-evaporation method were underestimated. The correlation between the estimated and the measured PET, however, showed high significance except for July and August by Blanney-Criddle method, which implied that the coefficients should be adjusted to the Korean conditions. 2. The meteorological factors which showed hgih correlation with the measured PET were temperature, vapour pressure deficit, sunshine hours, solar radiation and pan-evaporation. Several multiple regression equations using meteorological factors were formulated to estimate PET. The equation with pan-evaporation (Eo) was the simplest but highly accurate. PET = 0.712 + 0.705Eo 3. The crop coefficient of Chinese cabbages (Kc), the ratio of the maximum evapotranspiration (ETm) to PET, ranged from 0.5 to 0.7 at early growth stage and from 0.9 to 1.2 at mid and late growth stages. The regression equation with respect to the growth progress degree (G), ranging from 0.0 at transplanting day to 1.0 at the harvesting day, were: $$Kc=0.598+0.959G-0.501G^2$$ for spring cabbages $$Kc=0.402+1.887G-1.432G^2$$ for autumn cabbages 4. The soil factor (Kf), the ratio of the actual evapotranspiration to the maximum evapotranspiration, showed 1.0 when the available soil water fraction (f) was higher than a threshold value (fp) and decreased linearly with decreasing f below fp. The relationships were: Kf=1.0 for $$f{\geq}fp$$ Kf=a+bf for f$$I{\leq}Esm$$ Es = Esm for I > Esm 6. The model for estimating actual evapotranspiration (ETa) was based on the water balance neglecting capillary rise as: ETa=PET. Kc. Kf+Es 7. The model for estimating relative yield (Y/Ym) was selected among the regression equations with the measured ETa as: Y/Ym=a+bln(ETa) The coefficients and b were 0.07 and 0.73 for spring Chinese cabbages and 0.37 and 0.66 for autumn Chinese cabbages, respectively. 8. The estimated ETa and Y/Ym were compared with the measured values to verify the model established above. The estimated ETa showed disparities within 0.29mm/day for spring Chinese cabbages and 0.19mm/day for autumn Chinese cabbages. The average deviation of the estimated relative yield were 0.14 and 0.09, respectively. 9. The deviations between the estimated values by the model and the actual values obtained from three cropping field experiments after the completion of the model calibration were within reasonable confidence range. Therefore, this model was validated to be used in practical purpose.

  • PDF