• Title/Summary/Keyword: 대사화합물

Search Result 275, Processing Time 0.028 seconds

Development of "Bt-Plus" Biopesticide Using Entomopathogenic Bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) Metabolites (곤충병원세균(Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata)의 대사물질을 이용한 "비티플러스" 생물농약 개발)

  • Seo, Sam-Yeol;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.171-178
    • /
    • 2011
  • Bacillus thuringiensis (Bt) is a bacterial biopesticide against insect pests, mainly lepidopterans. Spodoptera exigua and Plutella xylostella exhibit significant decreases in Bt susceptibility in late larval instars. To enhance Bt pathogenicity, we used a mixture treatment of Bt and other bacterial metabolites which possessed significant immunosuppressive activities. Mixtures of Bt with culture broths of Xenorhabdus nematophila (Xn) or Photorhabdus temperata ssp. temperata (Ptt) significantly enhanced the Bt pathogenicity against late larval instars. Different ratios of Bt to bacterial culture broth had significant pathogenicities against last instar P. xylostella and S. exigua. Five compounds identified from the bacterial culture broth also enhanced Bt pathogenicity. After determining the optimal ratios, the mixture was applied to cabbage infested by late instar P. xylostella or S. exigua in greenhouse conditions. A mixture of Bt and Xn culture broth killed 100% of both insect pests when it was sprayed twice, while Bt alone killed less than 80% or 60% of P. xylostella and S. exigua, respectively. Other Bt mixtures, including Ptt culture broth or bacterial metabolites, also significantly increased pathogenicity in the semi-field assays. These results demonstrated that the Bt mixtures collectively names "Bt-Plus" can be developed into potent biopesticides to increase the efficacy of Bt.

Investigation of biodegradation pathway of dibenzofuran by Novosphingobium pentaromativorans US6-1 via transcriptomic and mass-spectrometric analysis (전사체와 대사물질 구조분석을 통한 Novosphingobium pentaromativorans US6-1의 dibenzofuran 분해 경로 해석)

  • Na, Hyeyun;Kwon, KaeKyoung
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.46-52
    • /
    • 2018
  • Biodegradation pathway of dibenzofuran (DBF) of Novosphingobium pentaromativorans US6-1, a high-molecular-weight polycyclic aromatic hydrocarbons degrading strain, was investigated via analysis of metabolic intermediates and transcriptome. As a result, 3(2H)-benzofuranone, a basic skeleton of the metabolic intermediates produced by lateral dioxygenation process, was detected as an intermediate. RNA-Seq analysis confirmed that most of the expressed genes upon exposure to DBF were related to the lateral degradation pathway. Based on these results, the biodegradation pathway of DBF by N. pentaromativorans US6-1 was proposed.

Isolation of secondary metabolites from an Arctic bacterium, Pseudomonas aeruginosa and their antimicrobial activities (북극유래 박테리아, Pseudomonas aeruginosa로 부터 대사산물들의 분리 및 항진균 활성)

  • Youn, Ui Joung;Kim, Min Ju;Han, Se Jong;Yim, Jung Han
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.415-420
    • /
    • 2016
  • Chemical study of an Arctic bacterium, Pseudomonas aeruginosa (Pseudomonadaceae) led to the isolation of two diketopiperazines 1 and 2, two phenazine alkaloids 3 and 4, and an indole carbaldehyde 5, along with a benzoic acid derivative 6. The structures of the compounds were confirmed by 1D and 2D NMR, and MS experiments, as well as by comparison of their data with published values. Among the isolates, compounds 5 and 6 were isolated for the first time from P. aeruginosa of the seawater of Arctic Chuckchi Sea. Antimicrobial activities of compounds 1‒6 against a Staphylococcus aureus and Candida albicans were evaluated.

Secondary Metabolites from the Mycelial Culture Broth of Phellinus linteus (상황(Phellinus linteus) 배양 균사체의 2차 대사산물에 대한 화학적 연구)

  • Song, K.S.;Cho, S.M.;Ko, K.S.;Han, M.W.;Yoo, I.D.
    • Applied Biological Chemistry
    • /
    • v.37 no.2
    • /
    • pp.100-104
    • /
    • 1994
  • From the 48 hour-cultured mycelial broth of Phellinus linteus, six compounds were isolated by means of ethyl acetate extraction, silica gel column chromatography and preparative thin layer chromatography, consecutively. Compound 1 was identified as a succinic acid by the comparison of its spectral data with authentic sample. Compounds 2 and 3 were identified as p-hydroxyphenyl acetic acid methyl ester and p-hydroxybenzaldehyde by spectroscopic studies, respectively. NMR and MS studies of compound 6 revealed that it was 2,5-dihydroxymethyl furan. Compound 4, which showed similar NMR absorptions and MS fragmentation pattern with those of compound 6 was identified as 2-hydroxymethyl-5-methoxymethylfuran. These structures were verified by the spectral data of the acetate derivatives of the compounds. Compound 5 was supposed to be a N-acetyltyramine from its $^1H-NMR$ and EI-MS data, and its structure was confirmed by a synthesis starting from tyramine.

  • PDF

Plant growth promoting effect of 4-quinolinone metabolites from Pseudomonas cepacia and 4-quinolinone-3-carboxylate derivatives on red pepper plant (Capsicum annum) (Pseudomonas cepacia로부터 유래한 4-quinolinone 대사물질과 4-quinolinone-3-carboxylate 유도체의 고추(Capsicum annum)에서의 생장촉진 효과)

  • Moon, Surk-Sik;Myung, Eul-Jae;Cho, Soon-Chang;Park, Jae-Bum;Chung, Bong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.2
    • /
    • pp.64-71
    • /
    • 2002
  • Plant growth promoting activity of quinolinone metabolites, 2-(2-hepteny)-3-methyl-4-quinolinone (1), 2-heptyl-3-methyl-4-quinolinone, and 2-nonyl-3-methyl-4-quinolinone, produced by Pseudomonas cepacia and ethyl 2-methyl-3-alkyl-4-quinolinone carboxylates chemically synthesized were tested by using seed-germination assay, growth increments in plant height after foliar applications. Plant height increment, fresh weight, and the number of fruits were measured after seed-soaking and drench treatment. Compound 1 among the natural products showed a consistent growth promoting effect in seed-germination and plant height after a foliar application. After a seed-soaking and drench treatment, compound 1 and synthetic ethyl 2-methyl-4-quinolinone-3-carboxylate (5) showed a significant enhancement in fresh weight and the number of fruits after harvest. Compound 1 and 5 increased the number of fruits per plant by 44% and 84% over the control, respectively.

Structure and Isolation of Xanthine Oxidase Inhibitor from Oolong Tea (우롱차로부터 Xanthine Oxidase 저해물질 분리 및 구조)

  • An, Bong-Jeun;Kim, Won-Keuk;Choi, Jang-Youn;Kwon, Ik-Boo;Choi, Cheong
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.558-562
    • /
    • 1992
  • Xanthine oxidase involved in pruine metabolism oxidizes hypoxanthine to xanthine and xanthine to uric acid. The derangement of pruine metabolism results in gout that associates painful deposit of monosodium urate in the cartilage of joints. In the continuous study for natural compound, six flavan-3-ols have been isolated from the leaves of Oolong tea. The structures of procyanidin B-1, B-3, procyanidin B-3-3-O-rhamnose, procyanidin B-1-3-O-gallate, (-)-epicatechin, (-)-epicatechin-3-O-gallate were established by NMR and their inhibitory effect on xanthine oxidase activity was investigated. Flavan-3-ols containing the gallate had a high inhibitory capacity. Procyanidin B-1-3-O-gallate showed complete inhibition at $50\;{\mu}M$ and inhibited on the xanthine oxidase competitively.

  • PDF

Studies on the Indoles in Common Reed. -[Part 1] Indole Compounds Occuring in the Shoot of Common Reed [Phragmites Communis Trin.]- (갈대의 INDOLE 화합물(化合物) 연구(硏究) -[제1보](第一報) 갈대 유아(幼芽)의 Indole 화합물(化合物) 검색(檢索)-)

  • Kim, Y.H.;Lee, C.Y.;Kim, I.S.
    • Applied Biological Chemistry
    • /
    • v.19 no.1
    • /
    • pp.24-30
    • /
    • 1976
  • Rhizomes of the common reed (Phragmites communis Trin.) were incubated for three days in the dark. Methanol extract of the shoots was thin layer chromatographed with several solvent systems and visualized with five reagents. The results may be summarized as follows: 1. Serotonin, tryptophan, and tryptamine were identified by cochromatography with the respective authentic compounds. Bufotenine, N-methylserotonin, and N,N-dimethyltryptamine were tentatively identified by their Rf values and colour reactions. The presence of skatole and gramine was suggested. 2. It was esteemed that the common reed might have an active methylation/hydroxylation system of indole compounds at least for a period of time. 3. The presently devised 'overlap' thin layer chromatographic technique may be a useful tool for the identification of a compound whose Rf value was diverse from that of the authentic one by the interferance containing in a sample material.

  • PDF

Present and prospect of plant metabolomics (식물대사체 연구의 현황과 전망)

  • Kim, Suk-Weon;Kwon, Yong-Kook;Kim, Jong-Hyun;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.12-24
    • /
    • 2010
  • Plant metabolomics is a research field for identifying all of the metabolites found in a certain plant cell, tissue, organ, or whole plant in a given time and conditions and for studying changes in metabolic profiling as time goes or conditions change. Metabolomics is one of the most recently developed omics for holistic approach to biology and is a kind of systems biology. Metabolomics or metabolite fingerprinting techniques usually involves collecting spectra of crude solvent extracts without purification and separation of pure compounds or not in standardized conditions. Therefore, that requires a high degree of reproducibility, which can be achieved by using a standardized method for sample preparation and data acquisition and analysis. In plant biology, metabolomics is applied for various research fields including rapid discrimination between plant species, cultivar and GM plants, metabolic evaluation of commercial food stocks and medicinal herbs, understanding various physiological, stress responses, and determination of gene functions. Recently, plant metabolomics is applied for characterization of gene function often in combination with transcriptomics by analyzing tagged mutants of the model plants of Arabidopsis and rice. The use of plant metabolomics combined by transcriptomics in functional genomics will be the challenge for the coming year. This review paper attempted to introduce current status and prospects of plant metabolomics research.

Influence of Starvation and Humic Acid on Soil Microbial 2- Hydroxypyridine Metabolism (토양 미생물의 2-hydroxypyridine 대사에 미치는 기아상태와 부식산의 영향)

  • 황선형
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.13-23
    • /
    • 1999
  • In this research, 3-hydroxypyridine(2-HP) metabolic ability of starving Arthrobacter crystallopoietes cell and the effect of humic acid on the metabolism of this starving cell were evaluated. 2-HP metabolic ability of exponential phase cell (acclimated cell) was much higher than that of lag phase cell (unacclimated cell) during starvation period. After 3 days of starvation, 2-HP half-life of the acclimated cell was 14 hours and that of the unacclimated cell was 46.5 hours. Humic acid enhanced the stability of 2-HP monooxygenase of starving co]1 and, after 2 days of starvation, the residual activity rate of this enzyme of the microbial cell starved in humic acid solution was 12% while the rate for control condition was 1.5%. After 14 days of starvation, 2-HP half-life for control condition was 43 hours and that for humic acid condition was 1.25 hour.

  • PDF

Determination of Urinary Metabolite of Profenofos after Oral Administration and Dermal Application to Rats (흰쥐를 이용한 profenofos의 경구투여 및 피부도포 후 뇨 중 대사물질 측정)

  • 민경진;조영주;이인선;차춘근
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.1
    • /
    • pp.20-25
    • /
    • 2002
  • This study was aimed to determine the urinary metabolite of profenofos, one of the organophos-phorus pesticides, as the biomarkers of exposure. Urine samples were collected fort 24 hours in metabolic cages after oral administration and dermal application of profenofos to rats. Identification of the derivatized urinary metabolite was determined by GC/MS and excretion time courses of the urinary metabolite was analyzed by GC/MS. Urinary metabolite of profenofos, 4-bromo-2-chlorophenol, was detected in rats urine both after oral administration and dermal application of profenofos. Parent compound was not detected in the experiment. In GC/MS, the mass spectral confirmation for 4-bromo-2-chlorophenol ion was identified at m/z 208.4-bromo-2-chlorophenol was excreted within 48 hours and 72 hours after oral administration and dermal application of profenofos, respectively. In this study, the same urinary metabolite of profenofos was detected both in oral and dermal exposure. Generally, excretion of the urinary metabolite after oral administration was detected faster than after dermal application. It is suggested that urinary 4-bromo-2-chlorophenol could be used as the biomarkers of exposure to profenofos.