• Title/Summary/Keyword: 대사공학

Search Result 328, Processing Time 0.027 seconds

Research trends, applications, and domestic research promotion stratigies of metabolomics (대사체학의 연구 동향, 응용 및 국내 연구 활성화 방안)

  • Kim, So-Hyun;Yang, Seung-Ok;Kim, Kyoung-Heon;Kim, Young-Suk;Liu, Kwang-Hyeon;Yoon, Young-Ran;Lee, Dong-Ho;Lee, Choong-Hwan;Hwang, Geum-Sook;Chung, Myeon-Woo;Choi, Ki-Hwan;Choi, Hyung-Kyoon
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.113-121
    • /
    • 2009
  • As one of the new areas of 'omics' technology, there is increasing interest in metabolomics, which involves the analysis of low-molecular-weight compounds in cells, tissues, and biofluids, and considers interactions within various organisms and reactions of external chemicals with those organisms. However, metabolomics research is still at a fundamental stage in Korea. Therefore, the purpose of this study was to establish a strategic long-term plan to revitalize the national metabolomics approach and obtain the elementary data necessary to determine a policy for effectively supporting metabolomics research. These investigations clarified the state of metabolomics study both in Korea and internationally, from which we attempted to find the potentiality and fields where a metabolomics approach would be applicable, such as in medical science. We also discuss strategies for developing metabolomics research. This study revealed that promoting metabolomics in Korea requires cooperation with metabolomics researchers, acquisition of advanced technology, capital investment in metabolomics approach, establishment of metabolome database, and education of metabolome analysis experts. This would reduce the gap between the national and international levels of metabolomics research, with the resulting developments in metabolomics having the potential to greatly contribute to promoting biotechnology in Korea.

Development of L-Threonine Producing Recombinant Escherichia coli using Metabolic Control Analysis (대사 조절 분석 기법을 이용한 L-Threonine 생산 재조합 대장균 개발)

  • Choi, Jong-Il;Park, Young-Hoon;Yang, Young-Lyeol
    • KSBB Journal
    • /
    • v.22 no.1
    • /
    • pp.62-65
    • /
    • 2007
  • New strain development strategy using kinetic models and metabolic control analysis was investigated. In this study, previously reported mathematical models describing the enzyme kinetics of intracellular threonine synthesis were modified for mutant threonine producer Escherichia coli TF5015. Using the modified models, metabolic control analysis was carried out to identify the rate limiting step by evaluating the flux control coefficient on the overall threonine synthesis flux exerted by individual enzymatic reactions. The result suggested the production of threonine could be enhanced most efficiently by increasing aspartate semialdehyde dehydrogenase (asd) activity of this strain. Amplification of asd gene in recombinant strain TF5015 (pCL-$P_{aroF}$-asd) increased the threonine production up to 23%, which is much higher than 14% obtained by amplifying aspartate kinse (thrA), other gene in threonine biosynthesis pathway.

Metabolic engineering of the genus Clostridium for butanol production (Clostridium 속 미생물 대사공학을 통한 butanol 생산)

  • Woo, Ji Eun;Kim, Minji;Noh, Hyeon Ji;Hwang, NuRi;Kim, Jin-Hyo;Lee, Sang Yup;Jang, Yu-Sin
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.391-397
    • /
    • 2016
  • Clostridium is a genus of Gram-positive, rod shape, spore-forming obligate anaerobe. Recently, Clostridium has been attracted as a host for bio-based chemical production, due to its diversity of substrate utilization and the production ability for metabolites which can be used as a building block for chemical production. Especially, butanol produced from Clostridium has been considered as an alternative fuel. As a transportation fuel, butanol has a higher energy density and lower hygroscopicity compared to ethanol, the first generation biofuel. Recently, metabolic engineering of Clostridium has been massively conducted for butanol production. In this study, the metabolic engineering strategy of Clostridium for butanol production has been reviewed with a brief perspective.

Non-Dialog Section Detection for the Descriptive Video Service Contents Authoring (화면해설방송 저작을 위한 비 대사 구간 검출)

  • Jang, Inseon;Ahn, ChungHyun;Jang, Younseon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.296-306
    • /
    • 2014
  • This paper addresses a problem of non-dialog section detection for the DVS authoring, the goal of which is to find meaningful section from the broadcasting audio, where audio description can be inserted. The broadcasting audio involves the presence of various sounds so that it first discriminates between speech and non-speech for each audio frame. Proposed method jointly exploits the inter-channels structure and speech source characteristics of the broadcasting audio whose number of channel is stereo. Also, rule based post-processing is finally applied to detect the non-dialog section whose length is appropriate for audio description. Proposed method provides more accurate detection compared to conventional method. Experimental results on real broadcasting contents show that qualitative superiority of the proposed method.

Development of Pichia stipitis Co-fermenting Cellobiose and Xylose Through Adaptive Evolution (적응진화를 활용한 cellobiose와 xylose 동시발효 Pichia stipitis의 개발)

  • Kim, Dae-Hwan;Lee, Won-Heong
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.565-573
    • /
    • 2019
  • Production of biofuels and value-added materials from cellulosic biomass requires the development of a microbial strain capable of efficiently fermenting mixed sugars. In this study, the natural xylose fermenting yeast, Pichia stipitis, was evolved to simultaneously ferment cellobiose and xylose. Serial subcultures of wild-type P. stipitis in 20 g/l cellobiose were performed to increase the rate of cellobiose consumption. A total of ten rounds of the serial subculture led to the isolation of an evolved strain fermenting cellobiose significantly faster than the parental strain. The evolved strain displayed enhanced ethanol yield from 0 to 0.4 g ethanol/g cellobiose. The evolved P. stipitis simultaneously fermented cellobiose and xylose in batch fermentation. The genetic information of our evolved P. stipitis would be valuable in the development of a microbial host for the production of biofuels and biomaterials from cellulosic biomass.

Production of 4-Hydroxybenzyl Alcohol Using Metabolically Engineered Corynebacterium glutamicum (대사공학에 의해 개발된 코리네박테리움 글루타미컴에 의한 4-히드록시벤질 알코올 생산)

  • Kim, Bu-Yeon;Jung, Hye-Bin;Lee, Ji-Yeong;Ferrer, Lenny;Purwanto, Henry Syukur;Lee, Jin-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.506-514
    • /
    • 2020
  • 4-Hydroxybenzyl alcohol (4-HB alcohol) is one of the major active components of Gastrodia elata Blume, with beneficial effects on neurological disorders such as headache, convulsive behavior, and dizziness. Here, we developed a metabolically engineered Corynebacterium glutamicum strain able to produce 4-HB alcohol from 4-hydroxybenzoate (4-HBA). First, the strain APS963 was obtained from the APS809 strain via the insertion of aroK from Methanocaldococcus jannaschii into the NCgl2922-deleted locus. As carboxylic acid reductase from Nocardia iowensis catalyzes the reduction of 4HBA to 4-hydroxybenzaldehyde (4-HB aldehyde), we then introduced a codon-optimized car gene into the genome of APS963, generating the GAS177 strain. Then, we deleted creG coding for a putative short-chain dehydrogenase and inserted ubiCpr encoding a product-resistant chorismate-pyruvate lyase into the pcaHG-deleted locus. The resulting engineered GAS355 strain accumulated 2.3 g/l 4-HB alcohol with 0.32 g/l 4-HBA and 0.3 g/l 4-HB aldehyde as byproducts from 8% glucose after 48 h of culture.

Analysis of glucosinolates and their metabolites from napa cabbage (Brassica rapa subsp. Pekinensis) and napa cabbage kimchi using UPLC-MS/MS (UPLC-MS/MS를 이용한 배추와 배추김치의 글루코시놀레이트 및 대사체 분석)

  • Kim, Jaecheol;Park, Hyo Sun;Hwang, Keum Taek;Moon, BoKyung;Kim, Suna
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.587-594
    • /
    • 2020
  • In this study, we analyzed glucosinolates and their metabolites in the inner and outer parts of napa cabbage (NC; Brassica rapa subsp. pekinensis) and napa cabbage kimchi (NKC) using UPLC-ESI-MS/MS. In the extracts from NC and NKC, glucobrassicanapin (m/z 386), glucoalyssin (m/z 450), glucobrassicin (m/z 447), 4-methoxyglucobrassicin (m/z 477), and neoglucobrassicin (m/z 477) were detected using the MS scan mode ([M-H]-), and gluconapin (m/z 372→97), progoitrin (m/z 388→97), glucoiberin (m/z 422→97), 4-methoxyglucobrassicin (m/z 477→97), and neoglucobrassicin (m/z 477→447) were detected using the MS/MS MRM mode ([M-H]-). Ascorbigen (m/z 306→130) and indole-3-carboxaldehyde (I3A; m/z 146→118), which were metabolites of glucobrassicins, were detected using the MS/MS MRM ([M+H]+) mode. The peak intensities of ascorbigen in the extract from the inner and outer parts of NC were significantly higher than those of the NKC extract (p<0.05); however, there was no significant difference in I3A peak intensity between the NC and NKC extracts.