• 제목/요약/키워드: 대비 제한 적응 히스토그램 평활화

검색결과 4건 처리시간 0.019초

대비제한 적응 히스토그램 평활화에서 매개변수 결정방법 (A Novel Method of Determining Parameters for Contrast Limited Adaptive Histogram Equalization)

  • 민병석;조태경
    • 한국산학기술학회논문지
    • /
    • 제14권3호
    • /
    • pp.1378-1387
    • /
    • 2013
  • 히스토그램 평활화는 영상의 밝기 분포를 변화시킴으로써 화질을 향상시키는 방법으로 다양한 분야에서 응용되고 있다. 전역적인 방법은 영상 밝기의 전체적인 분포를 균등 분포로 변환함으로써 영상의 밝기가 과도하게 변하는 단점을 갖고 있다. 이를 해결하기 위한 방법으로 K. Zuierveld가 제안한 대비 제한 적응 히스토그램 평활화(CLAHE)가 실용적으로 널리 사용되고 있다. 이 방법에서는 블록단위의 처리를 위한 블록 크기와 대비 제한을 위한 매개변수 등 두 개의 매개변수가 히스토그램의 평활화 성능을 결정하는데, 이것들을 결정하는 구체적인 알고리듬은 없으며 실험적으로 시행착오학습 통해 결정한다. 본 논문에서는 영상의 엔트로피에 기반해서 CLAHE의 매개변수인 블록 크기와 대비제한 매개변수를 결정하는 새로운 방법을 제안한다. 제안한 방법은 CLAHE를 자동화할 수 있으며, 전체적으로 어두운 영상이나 밝은 영상에 적용한 결과 전역적인 방법에 비해 주관적 화질 개선의 효과를 나타내었다.

조명 변화 감지에 의한 영상 콘트라스트 개선 (Image Contrast Enhancement by Illumination Change Detection)

  • 바잉뭉흐 어드게렐;이창훈
    • 한국지능시스템학회논문지
    • /
    • 제24권2호
    • /
    • pp.155-160
    • /
    • 2014
  • 영상처리를 통한 이동 물체 인식과 화질 개선 등의 연구에서 조명 변화가 성능에 큰 영향을 미치기 때문에 조명 변환에 대한 대응은 컴퓨터 비전 응용 분야에서의 중요한 관심사 중 하나이다. 조명 변화를 감지할 수 있게 되면 변화가 있는 시점에서부터 적절한 개선 알고리즘을 적용함으로써 인식률 향상 및 화질 개선 효과를 증대시킬 수 있다. 이에 본 연구에서는 급격한 조명 변화를 감지함에 있어 실시간성을 얻기 위하여 지역 정보를 이요하고 퍼지 논리를 도입하여 이를 효과적으로 감지하는 방법을 제안한다. 급격한 조명 변화를 감지하는 효과적인 방법으로 모서리 영역과 가운데 영역에 대한 각각의 히스토그램의 평균과 편차, 그리고 변화 추이를 반영하기 위하여 이전 프레임의 각 영역에 대한 히스토그램의 평균과 편차와의 변화량을 입력으로 급격한 조명 변화가 있을 때 입력 값의 변화 패턴을 퍼지 규칙으로 만들어 조명 변화를 감지하도록 하였다. 또한 움직이는 물체에 가려 발생하는 변화와 구별하기 위하여 전체 영역에 대한 평균과 편차 변화량을 도입하여 논리적으로 추론하여 차이를 구별할 수 있도록 하였고 점진적으로 조명이 변화하는 것을 감지할 수 있도록 하였다. 다양한 테스트 데이터에 대해 객관적인 정확도 측정 기법을 이용하여 민감도와 특이도를 계산하여 제안한 방법의 효용성을 보였다. 적응형 뉴로-퍼지 추론시스템을 도입하여 대비제한 적응 히스토그램 평활화 (CLAHE)의 매개 변수를 자동으로 선택할 수 있는 방법을 제안하여 급격한 조명의 변화를 감지한 결과를 바탕으로 화질을 개선할 수 있음을 보였다.

갑상선 초음파 영상의 평활화 알고리즘에 따른 U-Net 기반 학습 모델 평가 (Evaluation of U-Net Based Learning Models according to Equalization Algorithm in Thyroid Ultrasound Imaging)

  • 정무진;오주영;박훈희;이주영
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제47권1호
    • /
    • pp.29-37
    • /
    • 2024
  • This study aims to evaluate the performance of the U-Net based learning model that may vary depending on the histogram equalization algorithm. The subject of the experiment were 17 radiology students of this college, and 1,727 data sets in which the region of interest was set in the thyroid after acquiring ultrasound image data were used. The training set consisted of 1,383 images, the validation set consisted of 172 and the test data set consisted of 172. The equalization algorithm was divided into Histogram Equalization(HE) and Contrast Limited Adaptive Histogram Equalization(CLAHE), and according to the clip limit, it was divided into CLAHE8-1, CLAHE8-2. CLAHE8-3. Deep Learning was learned through size control, histogram equalization, Z-score normalization, and data augmentation. As a result of the experiment, the Attention U-Net showed the highest performance from CLAHE8-2 to 0.8355, and the U-Net and BSU-Net showed the highest performance from CLAHE8-3 to 0.8303 and 0.8277. In the case of mIoU, the Attention U-Net was 0.7175 in CLAHE8-2, the U-Net was 0.7098 and the BSU-Net was 0.7060 in CLAHE8-3. This study attempted to confirm the effects of U-Net, Attention U-Net, and BSU-Net models when histogram equalization is performed on ultrasound images. The increase in Clip Limit can be expected to increase the ROI match with the prediction mask by clarifying the boundaries, which affects the improvement of the contrast of the thyroid area in deep learning model learning, and consequently affects the performance improvement.

퍼지를 이용한 X-ray 영상의 대비제한 적응 히스토그램 평활화 한계점 결정 (The Clip Limit Decision of Contrast Limited Adaptive Histogram Equalization for X-ray Images using Fuzzy Logic)

  • 조현지;계희원
    • 한국멀티미디어학회논문지
    • /
    • 제18권7호
    • /
    • pp.806-817
    • /
    • 2015
  • The contrast limited adaptive histogram equalization(CLAHE) is an advanced method for the histogram equalization which is a common contrast enhancement technique. The CLAHE divides the image into sections, and applies the contrast limited histogram equalization for each section. X-ray images can be classified into three areas: skin, bone, and air area. In clinical application, the interest area is limited to the skin or bone area depending on the diagnosis region. The CLAHE could deteriorate X-ray image quality because the CLAHE enhances the area which doesn't need to be enhanced. In this paper, we propose a new method which automatically determines the clip limit of CLAHE's parameter to improve X-ray image quality using fuzzy logic. We introduce fuzzy logic which is possible to determine clip limit proportional to the interest of users. Experimental results show that the proposed method improve images according to the user's preference by focusing on the subject.