• Title/Summary/Keyword: 대두 추출물

Search Result 273, Processing Time 0.02 seconds

Development of Simultaneous Analytical Method for Streptomycin and Dihydrostreptomycin Detection in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Streptomycin 및 Dihydrostreptomycin 동시시험법 개발)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Park, Shin-Min;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • A method was developed for the simultaneous detection of an antibiotic fungicide, streptomycin, and its metabolite (dihydrostreptomycin) in agricultural products using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted using methanol adjusted to pH 3 using formic acid, and purified with a HLB (Hydrophilic lipophilic balance) cartridge. The matrix-matched calibration curves were constructed using seven concentration levels, from 0.001 to 0.1 mg/kg, and linearity of five agricultural products (hulled rice, potato, soybean, mandarin, green pepper), with coefficients of determination $(R^2){\geq}0.9906$, for streptomycin and dihydrostreptomycin. The mean recoveries at three fortification levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n = 5) were from 72.0~116.5% and from 72.1~116.0%, and relative standard deviations were less than 12.3% and 12.5%, respectively. The limits of quantification (LOQ) were 0.01 mg/kg, which are satisfactory for quantification levels corresponding with the Positive List System. All optimized results satisfied the criteria ranges requested in the Codex guidelines and the Food Safety Evaluation Department guidelines. The present study could serve as a reference for the establishment of maximum residue limits and be used as basic data for detection of streptomycin and dihydrostreptomycin in food.

Development of a Simultaneous Analytical Method for Determination of Insecticide Broflanilide and Its Metabolite Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살충제 Broflanilide 및 대사물질 동시시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Park, Shin-min;Cho, Sung Min;Kim, Ji-Young;Shin, Hye-Sun;Jang, Dong Eun;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.124-134
    • /
    • 2019
  • An analytical method was developed for the determination of broflanilide and its metabolites in agricultural products. Sample preparation was conducted using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method and LC-MS/MS (liquid chromatograph-tandem mass spectrometer). The analytes were extracted with acetonitrile and cleaned up using d-SPE (dispersive solid phase extraction) sorbents such as anhydrous magnesium sulfate, primary secondary amine (PSA) and octadecyl ($C_{18}$). The limit of detection (LOD) and quantification (LOQ) were 0.004 and 0.01 mg/kg, respectively. The recovery results for broflanilide, DM-8007 and S(PFP-OH)-8007 ranged between 90.7 to 113.7%, 88.2 to 109.7% and 79.8 to 97.8% at different concentration levels (LOQ, 10LOQ, 50LOQ) with relative standard deviation (RSD) less than 8.8%. The inter-laboratory study recovery results for broflanilide and DM-8007 and S (PFP-OH)-8007 ranged between 86.3 to 109.1%, 87.8 to 109.7% and 78.8 to 102.1%, and RSD values were also below 21%. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the Food and Drug Safety Evaluation guidelines (2016). Therefore, the proposed analytical method was accurate, effective and sensitive for broflanilide determination in agricultural commodities.

Developing the Process and Characteristics of Preservation of Area-Based Heritage Sites in Japan (일본 면형 유산 보존제도의 확산과정과 특성)

  • Sung, Wonseok;Kang, Dongjin
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.32-59
    • /
    • 2020
  • South Korea's area-based heritage preservation system originates from the "Preservation of Traditional Buildings Act" enacted in 1984. However, this system was abolished in 1996. As there was a need for protection of ancient cities in the 1960s, Japan enacted the Historic City Preservation Act in 1966, and 'Preservation Areas for Historic Landscapes' and 'Special Preservation Districts for Historic Landscapes' were introduced. For the preservation of area-based heritage sites, the 'Important Preservation Districts for Groups of Traditional Buildings' system introduced as part of the revision of the Cultural Heritage Protection Act in 1975 was the beginning. Then, in the early-2000s, discussions on the preservation of area-based heritage sites began in earnest, and the 'Important Cultural Landscape' system was introduced for protection of the space and context between heritage sites. Also, '33 Groups of Modernization Industry Heritage Sites' were designated in 2007, covering various material and immaterial resources related to the modernization of Japan, and '100 Beautiful Historic Landscapes of Japan' were selected for protection of local landscapes with historic value in the same year. In 2015, the "Japanese Heritage" system was established for the integrated preservation and management of tangible and intangible heritage aspects located in specific areas; in 2016, the "Japanese Agricultural Heritage" system was established for the succession and fostering of the disappearing agriculture and fishery industries; and in 2017, "the 20th Century Heritage," was established, representing evidence of modern and contemporary Japanese technologies in the 20th century. As a result, presently (in September 2020), 30 'Historic Landscape Preservation Areas', 60 'Historic Landscape Special Districts,' 120 'Important Preservation Districts for Groups of Traditional Buildings," 65 'Important Cultural Landscapes,' 66 'Groups of Modernization Industry Heritage Sites,' 264 "100 Beautiful Historic Landscapes of Japan,' 104 'Japanese Heritage Sites,' and 15 'Japanese Agricultural Heritage Sites' have been designated. According to this perception of situations, the research process for this study with its basic purpose of extracting the general characteristics of Japan's area-based heritage preservation system, has sequentially spread since 1976 as follows. First, this study investigates Japan's area-based heritage site preservation system and sets the scope of research through discussions of literature and preceding studies. Second, this study investigates the process of the spread of the area-based heritage site preservation system and analyzes the relationship between the systems according to their development, in order to draw upon their characteristics. Third, to concretize content related to relationships and characteristics, this study involves in-depth analysis of three representative examples and sums them up to identify the characteristics of Japan's area-based heritage system. A noticeable characteristic of Japan's area-based heritage site preservation system drawn from this is that new heritage sites are born each year. Consequently, an overlapping phenomenon takes place between heritage sites, and such phenomena occur alongside revitalization of related industries, traditional industry, and cultural tourism and the improvement of localities as well as the preservation of area-based heritage. These characteristics can be applied as suggestions for the revitalization of the 'modern historical and cultural space' system implemented by South Korea.