• Title/Summary/Keyword: 대구경강관다단그라우팅

Search Result 5, Processing Time 0.018 seconds

Case Study of a Shallow Tunnelling Through Complex Strata of Sand-Gravel and Rock Mass (모래자갈과 암반의 복합지층에 시공한 저심도 터널의 사례연구)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.244-254
    • /
    • 2015
  • The tunnel is excavated through the alluvial layer composed of sand and gravel with groundwater deposited on rock. A portion of upper part of the tunnel is located in the alluvial layer and there are several buildings just above the curved section of the tunnel. It is necessary to prevent from sand-flowing into the tunnel due to low strength of the alluvial, high groundwater level and shallow depth of the tunnel from the ground surface. For this, the alluvial around the tunnel is pre-reinforced by umbrella arch method with multi-stage grouting through large diameter steel pipes or jet grouting before excavating the tunnel. The effect of the pre-reinforcement of the tunnel and the safety of the buildings are monitored by measurement of ground deformation occurred during tunnelling.

Design and Construction for Mountain-Tunnel Under the Soil Area (산악터널 토사구간의 설계와 시공)

  • Moon, Du-Hyung;Moon, Hoon-Ki;Kang, In-Seop;Lee, Jae-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.845-862
    • /
    • 2009
  • Recently, Tunnel in soil has been designed frequently because Mountain Tunnel has been increased rapidly due to straight of horizontal curve and residents' complaints, tunnel portal has been planned at closed to surface for minimization of environmental damage. To excavate tunnel in soil, where displacement and crushing occur in tunnel face and crown because of unstable ground condition, appropriate reinforcement method needed. On this paper, through design and construction of the soil tunnel, consider application of reinforcement method, economical efficiency and stability.

  • PDF

The Support Types of the Tunnel for Centrifuge Model (터널의 지보방법에 관한 원심모형실험(遠心模型實驗))

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.199-209
    • /
    • 2002
  • This research is experimental thesis to prepare the structural safety of the upper bridge for support type on tunnel and the effect of settlement. Unit weight test and uni-axial compression test have been performed to simulate the physical property of foundation on the tunnel. Tunnel model of slip form type for centrifuge model has been developed to performed the tunnel excavation while field stress is activated. And the support type of tunnel such as umbrella arch method and large diameter steel pipe reinforce method has been tested for the centrifuge model. After the analysis of experiment, results show that internal displacement of large diameter steel pipe reinforce method is smaller than that of the umbrella arch method.

  • PDF

Numerical Analysis on the Behavior of the Earth Tunnel due to Supporting Methods (지보공법에 따른 토사터널의 거동에 관한 수치해석)

  • Kim, Jin-Tae;Park, Byung-Soo;Jeong, Gil-Soo;Yoo, Nam-Jea
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.239-250
    • /
    • 2004
  • Numerical analysis were performed to investigate the stability and internal movement of tunnel located beneath the base of abutment of bridge according to the method of supporting tunnel. Two supporting methods of the multi-staged grouting method with steel pipes and the large diameter of pipe supporting method were used in the centrifuge model tests. The slip form of model lining, specially built to simulate the process of tunnel excavating under the condition of accelerated g-level, was used in the centrifuge model tests. Four centrifuge model tests were performed, changing the supporting methods of the multi-staged grouting method with steel pipes and the large diameter of pipe supporting method and the location of model abutment base of bridge. For internal displacement of tunnel, movements of the crown. The left and the right sides of spring line were measured during the proceeds of excavating tunnel in centrifuge model tests. Test results were compared with numerically estimated values of internal displacement of tunnel by using the commercially available FEM software of PENTAGON-3D. It was found that they were in good agreements and the large diameter of pipe supporting method was more stable than the multi-staged grouting method with steel pipes with respect to the internal movement of tunnel.

  • PDF

Analysis on Surface Collapse of the Road NATM Tunnel through the Weathered Rock (풍화대를 통과하는 도로 NATM 터널의 천단부 함몰에 대한 연구)

  • Shin, Eun-Chul;Yoo, Jai-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2016
  • The construction of the road NATM tunnel, which undergoes the weathered zone of the mountain, was in process with the reinforcement methods such as the rock bolt, shotcrete depositing, and the multi step grout with large diameter steel pipe. The collapse from the ceiling, and on the ground surface area(sink hole), of which were measured to be 25m from the ground surface($V=12m(W){\times}14m(L){\times}5m(H)=840m^3$), as well as excessive displacements in the tunnel, had occurred. In order to execute the necessary reconstruction work, the causes of the surface collapses were inspected through the field investigation, in-situ tests, and numerical analysis. As a result, several proper solutions were suggested for both internal and external reinforcements for the tunnel. As a result of numerical analysis, the collapsed zone of the tunnel was reinforced up to 0.5D~1.0D laterally by the cement grouting on the ground surface, 0.5D longitudinally by the multi step grout with large diameter steel pipe in tunnel. With further reinforcement implemented by rebars in lining, the forward horizontal boring was executed to the rest of the tunnel to evaluate the overall status of the tunnel face. Appropriate reinforcement methods were provided if needed.