• Title/Summary/Keyword: 대공간 구조물

Search Result 150, Processing Time 0.023 seconds

Health Mornitoring of Spatial Structure by Optical FBG Sensor (광섬유센서를 이용한 대공간 구조물의 상시 모니터링)

  • Lee, Chang-Woo;Lee, Seung-Jae;Ju, Gi-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.49-55
    • /
    • 2007
  • In this paper, always monitoring system of fiber Bragg Crating(FBG)Sensor is described and FBGs are well suited for measuring the movement in the part of the spatial structure(for example, cable, membrane and so on)under the pressure conditions. In order to measure the movement of long span structure, we need the measurable equipment that takes in many spots to measure. In the result of experiment, the fiber sensors showed good response to the pressure conditions. Therefore, We could calculate the movement of spatial structure and be possible health monitoring of the spatial structure.

  • PDF

Optimal Shape Design of Space Truss Structure using Topology Optimization and Cellular Automata Model (위상최적화와 Cellular Automata 모델을 이용한 대공간 트러스 구조물의 최적형태 설계)

  • Kim, Ho-Soo;Lee, Min-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • It is important to design the optimal shape in the initial process because the influences on the design and construction are large according to the shape and pattern of spatial structures. However, the existing optimal shape designs for spatial structure are performed by the designer's intuition and experiences. Therefore, this study proposes the integrated process using the topology optimization and cellular automata model. First, the initial optimal shapes are obtained by using the topology optimization, and then the spatial truss structural patterns are created through the application of cellular automata rules. Finally, the optimal shapes to satisfy the various design conditions are generated by the structural analysis and size optimization.

Analysis on the Construction Cost of Spatial Structures (대공간 구조물의 공사비 분석)

  • Jang, Myung-Ho;Sur, Sam-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.133-140
    • /
    • 2007
  • Spatial structures is a appropriate shape that resists external force with only inplane force by reducing the influence of bending moment, and it maximizes the effect of structure system. An economic analysis is one of the most important factors to determine the project feasibility. Large spatial structures project is more need to comprehensive technology than a general construction project. In order to result in success of these project, it is desired that analyze an essential elements(for example, large budget, professional engineer, construction method, etc.) in the whole life cycle of buildings by schematic preparation from the early feasible study steps. We collect the data and analyze construction cost through this study which examines general remarks of existing spatial structures and researches its examples. This study is aimed to apply basic data to establish database the spatial structures.

  • PDF

The Case Study on the Erection Method of Large Span Structures (대공간 건축물 Erection 공법에 관한 사례 조사 연구)

  • Jung, Hwan-Mok;Lee, Seong-Yeun;Jee, Suck-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.97-104
    • /
    • 2007
  • Recently, the demand of the large span structures has been increasing. The large span structures include such a large scaled structures such as: the shell structure, the space frame structure, the membrane structure and the cable structure, etc. The large span structures are supposed to be confirmed and issued carefully at the initial process of the design besides the construction engineering aspects because of the structural specific cause that should solve and accomodate those large and wide space without columns. In the field of the large span structure construction, the erection construction method has been regarded as a major affected aspects on the construction cost, construction term, and stability. In the field of the large span structure construction, there are various construction method and system could be applied depends on the condition of the construction site and other circumstances such a major construction method as: the element method, the block method, the sliding method, the lift-up method and complexed method, etc. In this study, as the case study of the erection construction method of the large span structures, after survey and study that those existing large span structures construction cases which had applied and adopted the election construction method and analysis and classify into the Uoups by the size, span, ceiling height, structural system in odor to supply and suggest the data for the enhancement and development in the field of the erection construction method as a efficient structural solution of the large span structure construction.

  • PDF

대공간 구조물의 비선형 해석기법

  • 김승덕
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.7-18
    • /
    • 1997
  • 본 고에서는 컴퓨터를 이용하여 비선형문제를 어떻게 다룰 것인가에 관해 기초 지식에서부터 응용까지를 간단히 설명한다. 먼저 기하학적 비선형 문제를 중심으로, 기존의 비선형 해석기법에 관해 기초적인 기법부터 고난도의 기법까지 일반적으로 많이 사용되는 것을 자세히 소개한다. 또 대공간 구조물의 비선형 해석기법에 관한 이해를 돕기 위해 비교적 간단한 부재인 케이블/트러스 요소를 이용한 몇몇 예제와 비선형해석으로 인한 구조물 거동의 특성도 다룬다.

  • PDF

A Study on Parametric Modeling for the Analysis of Irregular Large Space Structures (비정형 대공간 구조물의 구조해석을 위한 파라메트릭 모델링)

  • Kim, Chee-Kyeong;Lee, Sang-Su;Choi, Hyun-Chul;Lee, Jae-Cheol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.18-21
    • /
    • 2011
  • 비정형의 대공간 구조물은 대량의 부재가 규칙성을 가지고 공간상에서 반복되는 패턴을 가지는 특징이 있다. 이러한 특징은 기존의 구조해석 모델러로부터의 접근을 어렵게 하는 반면, 관계성과 규칙성을 논리적으로 모델링함으로써 최종 모델을 생성해내는 파라메트릭 모델링 방법에는 매우 적합하다. 본 연구에서는 이전의 연구를 통해 개발된 파라메트릭 구조해석 모델링 툴인 STRAUTO을 이용해 전형적인 비정형 대공간 구조물인 용인시민체육공원 주경기장의 모델링에 파라메트릭 모델링 기법을 직접 적용해 봄으로써 이 새로운 접근법의 적합성과 효율성을 검토해 보았다.

  • PDF

A Study on the Establishment Feature and the Development of Large Space Buildings in Korea (국내 대공간 건축의 발달과정과 건립특성에 관한 연구)

  • Lee, Ju-Na
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.65-75
    • /
    • 2009
  • For the large space buildings since 1960s in Korea spanned more than 30m, the establishment feature and the development process were examined. As the Results, physical facilities with 40-70m span were mainly established in 1980s-1990s, but large scale convention centers have been establishing after 2000s as the used of large space buildings are varied. Also, a space frame has been generally used in 1980s while the unique structural shapes were builded in the early age(1960s), the structural design with concerns a form and using various structural systems have been attempting after 2000s.

  • PDF

Multi-objective Fuzzy Control of a Spacial Structure using Smart Base Isolation System (스마트 면진시스템을 이용한 대공간 구조물의 다목적 퍼지제어)

  • Kang, Joo-Won;Kim, Hyun-Su;Lim, Jun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.89-99
    • /
    • 2011
  • In this study, a smart base isolation system has been proposed to reduce dynamic responses of a spacial structure subjected to seismic excitation. MR dampers and low damping elastomeric bearings were used to compose a smart base isolation system and its vibration control performance has been investigated compared to that of the optimally designed lead-rubber bearing (LRB) isolation system. Control performance of smart base isolation system depends on control algorithm. Fuzzy controller was used in this study to effectively control the spacial structure having a smart base isolation system. Dynamic responses of the spacial structure with isolation system is conflict with base drifts and thus these two responses are selected as objective functions to apply multi-objective genetic algorithm to optimization of fuzzy controller. Based on numerical simulation results, it has been shown that the smart base isolation system proposed in this study can drastically reduce base drifts and seismic responses of the example spacial structure in comparison with the optimally designed LRB isolation system.

Study on Application of Dampers and Optimal Design for Retractable Large Spatial Structures (개폐식 대공간 구조물의 감쇠장치 적용 및 최적설계에 관한 연구)

  • Joung, Bo-Ra;Kim, Si-Uk;Kim, Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.351-358
    • /
    • 2020
  • This paper presents a tuned mass damper (TMD) utilizing a parametric design technique to reduce the dynamic responses to seismic loads of retractable large spatial structures. An artificial intelligence algorithm was developed to automatically search for the installation position of the damping device. This enables confirming the dynamic response of the structure in real time while finding the optimum position for the damping device. Further, the optimum mass of the damping device is determined from among several alternatives, and a design that can be effectively applied to both open and closed conditions of the roof is obtained.

Parametric Design Process for Structural Quantity Optimization of Spatial Building Structures (대공간 건축물 골조물량 최적화를 위한 파라메트릭 설계 프로세스)

  • Choi, Hyunchul;Lee, Si Eun;Kim, Chee Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.103-110
    • /
    • 2017
  • In this paper, it is covered in detail the process of generating structural alternatives with geometry change and its optimization by StrAuto. The main roof structure of the Exhibition Center is modelled parametrically and the optimal alt is derived by observing volume changes according to geometry change of main roof truss. Existing studies performed optimization process through sections and properties due to the limitations of shape change, but this study have meaning of performing the optimization with geometry changes which is the most critical skills of StrAuto. By the process of securing a sufficient margin by geometry changes and reducing volume with the optimization of sections, despite of a partial optimization of large space structure, it could be reduced by 11.7% of the total volume.