• Title/Summary/Keyword: 담지 Cu 촉매

Search Result 72, Processing Time 0.025 seconds

CuO/3Al$_2$O$_3$ㆍ2SiO$_2$, 촉매담지 세라믹 캔들필터를 이용한 먼지/NOx/SOx/HCl 제거기술

  • 문수호;홍민선;이재춘;이동섭
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.133-143
    • /
    • 2004
  • Simultaneous removal technology of particulate/NOx/SOx/HCl using CuO/3Al$_2$O$_3$ㆍ2SiO$_2$catalyst impregnated ceramic candle filters is an advanced air pollution process and provides significantly to reduce hazardous gases emitted from coal-fired power plant. This process uses a high-temperature catalytic filter for integrating SOx and HCl reduction through injection an alkali sorbent (such as hydrated lime or sodium bicarbonate), NOx removal through ammonia injection and selective catalytic reduction (SCR), and particulate collection on the catalytic filter surface. The advantages of the process include : compact integration of the emission control technologies into a single component; easy handling of dry sorbent and by-product; and improved SCR catalytic life due to lowered SOx, HCl and particulate levels. CuO/3Al$_2$O$_3$ㆍ2SiO$_2$ catalyst impregnated ceramic candle filters showed a possibility of simultaneous treatment from results which have ascertained high removal efficiency at various combined gases conditions, and in pilot plant test for 3 months, NO conversion was showed 90% over.

Preparation of Electroless Copper Plated Activated Carbon Fiber Catalyst and Reactive Evaluation of NO Removal (무전해 도금법으로 제조된 구리 함유 활성탄소섬유 촉매의 제조와 NO 제거 반응성 평가)

  • Yoon, Hee-Seung;Oh, Jong Hyun;Lee, Hyung Keun;Jeon, Jong-Ki;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.863-867
    • /
    • 2008
  • Pitch based activated carbon fiber(ACF) was prepared from reformed naphtha cracking bottom oil(NCB oil) by melt spinning. The fibers obtained were stabilized, carbonized, and then steam activated. The ACF was sensitized with Pd-Sn catalytic nuclei via a single-step activation approach. This sensitized ACF was used as precursors for obtaining copper plated ACFs via electroless plating. ACFs uniformly decorated with metal particles were obtained with reduced copper plating in the reaction solution. Effects of the amount of copper on characteristics of ACF/Cu catalysts were investigated through BET surface area, X-ray diffraction, scanning emission microscopy, and ICP. The amount of copper increased with plating time, but the surface area as well as the pore volume decreased. NO conversion increased with reaction temperature. NO conversion decreased with increasing the amount of copper, which is seemed to be due to the reduction of surface area as well as the dispersion of copper.

Characterization based on the dispersion of metal/zsm-5 catalyst (금속/ZSM-5 촉매의 분산도에 따른 특성화 연구)

  • Cho, Sae-Jung;Lee, Hye-Min;Lee, Min-Joo;Lee, Ju-Hun;Han, Seung-Tak;Kim, Jin-Gul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.561-564
    • /
    • 2006
  • Fe, Co, Zn, Cu, Pt 등의 전이금속과 ZSM-5 2종($SiO_2/Al_2O_3$ 몰비: 23, 50)과 ${\gamma}-alumina$를 담체로 사용하여 촉매를 합성하였다. 합성방법은 CVD(화학기상증착법) 과 Dry Impregnation (건식함침법)방법이었다. CVD 방법으로 얻은 Fe/ZSM-5는 지지체로 사용된 ZSM-5의 $SiO_2/Al_2O_3$의 몰 비가 작을수록, 즉 산점의 수가 많을수록 Fe 담지 량이 증가하는 것으로 보인다. 등온 환원 온도 $400^{\circ}C$에서 수소 환원 양이 최대로 나타나며, 이는 보고되는 $400^{\circ}C$에서의 최대 NOx 제거 반응 속도와 비례하는 것으로 나타난다.

  • PDF

Preparation and Properties of Disc Type CuO Catalyst Impregnated Ceramic Filters (디스크형 산화구리 촉매담지 세라믹필터의 제조와 물성)

  • Hong Min-Sun;Moon Su-Ho;Lee Jae-Chun;Lee Dong-Sub;Lim Woo Taik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.185-193
    • /
    • 2004
  • A catalyst with CuO ceramic filter for simultaneous treatment of dust and HAP was prepared and characterized. Catalytic ceramic filter can not only potentially achieve the substantial savings in energy but provide with effective optimization and integration of process for simultaneous removal of SO$_2$, NO$_{x}$ and particulates from flue gases. Catalytic ceramic filters remove simultaneously particulates on exterior surface of filters and reduce NO to $N_2$ and $H_2O$ by SCR (Selective Catalytic Reduction) process. Preparation of catalyst impregnated ceramic filter with disk shape (Ψ 50) follow the processing of alumino-silicate ceramic filter, support impregnation and catalyst impregnation (copper oxide). Preparation routes of alumino-silicate catalyst carrier suitable for production of catalytic filters practically were studied and developed using the sol-gel and colloidal processing, homogeneous precipitation and impregnation method. Characterization of the catalyst, catalyst carrier catalytic filter materials have been performed the using various techniques such as BET, XRD, TGA, SEM. Combination of the sol-gel and colloidal processing and impregnation method is recommended to prepare catalyst carriers economically for catalytic filter applications.s.

Study on the production of porous CuO/MnO2 using the mix proportioning method and their properties (반응몰비에 따른 다공성 CuO/MnO2의 제조 및 특성 연구)

  • Kim, W.G.;Woo, D.S.;Cho, N.J.;Kim, Y.O.;Lee, H.S.
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.182-186
    • /
    • 2015
  • In this study, the porous CuO/MnO2 catalyst was prepared through the co-precipitation process from an aqueous solution of potassium permanganate (KMnO4), manganese(II) acetate (Mn(CH3COO)2·4H2O) and copper(II) acetate (Cu(CH3COO)2·H2O). The phase change in MnO2 was analyzed according to the reaction molar ratio of KMnO4 to Mn(CH3COO)2. The reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O was varied at 0.3:1, 0.6:1, and 1:1. The aqueous solution of Cu(CH3COO)2 was injected into a mixed solution of KMnO4 and Mn(CH3COO)2 to 10~75 wt% relative to MnO2. The Cu ion co-precipitates as CuO with MnO2 in a highly dispersed state on MnO2. The physicochemical property of the prepared CuO/MnO2 was analyzed by using the TGA, DSC, XRD, SEM, and BET. The different phase types of MnO2 were prepared according to the reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O. The results confirmed that the porous CuO/MnO2 catalyst with γ-phase MnO2 was produced in the reaction mole ratio of KMnO4 to Mn(CH3COO)2 as 0.6:1 at room temperature.

Synthesis and Oxygen Reduction Reaction Characteristics of Multi-Walled Carbon Nanotubes Supported PtxM(1-x) (M = Co, Cu, Ni) Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cell (다중벽 탄소 나노 튜브에 담지한 PtxM(1-x)(M = Co, Cu, Ni) 합금촉매의 제조 및 고분자 전해질 연료전지에서 산소환원 특성)

  • Jung, Dong-Won;Park, Soon;Ahn, Chi-Yeong;Choi, Seong-Ho;Kim, Jun-Bom
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.667-673
    • /
    • 2009
  • The electrocatalytic characteristics of oxygen reduction reaction of the $PtxM_{(1-x)}$ (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The $Pt_xM_{(1-x)}$/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the $Pt_xM_{(1-x)}$ particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and $Pt_xM_{(1-x)}$/MWNTs catalysts are seen as FCC, and synthesized $Pt_xM_{(1-x)}$ crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, $Pt_{0.77}Co_{0.23}$/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or $Pt_xM_{(1-x)}$/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and $Pt_xM_{(1-x)}$ (M = Co, Cu, Ni) catalysts, the $Pt_{0.77}Co_{0.23}$/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.

Promoter Effect on Ni/YSZ Anode Catalyst of Solid Oxide Fuel Cell for Suppressing Coke Formation in the Methane Internal Reforming (고체산화물 연료전지용 Ni/YSZ 음극 촉매에서의 메탄 내부개질 반응 시 탄소 침적 억제를 위한 첨가제 영향)

  • Kim, Hye-Roung;Choi, Ji-Eun;Youn, Hyun-Ki;Chung, Jong-Shik
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.813-818
    • /
    • 2008
  • Various additives were added in small amounts on Ni/YSZ anode of SOFC (solid oxide fuel cell) in order to improve reactivity and to inhibit deactivation due to coke deposition during methane reforming using a low mole ratio steam ($H_2O/CH_4=1.5$) at $800^{\circ}C$. Ni/YSZ catalysts added with various perovskites did not show any improvement but exhibited a gradual decrease in the methane conversion. K-doped Ni/YSZ showed a steady increase and maintenance of the conversion up to 42 hours, after which there was an abrupt deactivation of catalyst owing to potassium loss by volatilization. Addition of 5% of $K_2Ti_2O_5$ on Ni/YSZ showed a stable maintenance of the conversion without K loss, and was able to prevent coke formation during a long time operation. Deactivation of catalyst during the reaction was mainly caused by the accumulation of graphidic carbon on the catalyst surface.

Catalytic Oxidation of Ammonia over Metal Supported on Alumina at Low Temperature (금속담지 활성알루미나 촉매의 암모니아 저온연소반응)

  • Lim, Yun-Hui;Lee, Ji-Yeol;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.371-379
    • /
    • 2013
  • In order to improve the selective oxidation reaction of gaseous ammonia at a low temperature, various types of metal-impregnated activated alumina were prepared, and also physical and chemical properties of the conversion of ammonia were determined. Both types of metal (Cu, Ag) impregnated activated alumina show high conversion rate of ammonia at high temperature (over $300^{\circ}C$). However, at lower temperature ($200^{\circ}C$), Ag-impregnated catalyst shows the highest conversion rate (93%). In addition, the effects of lattice oxygen of the developed catalyst was studied. Ce-impregnated catalyst showed higher conversion rate than commercial alumina, but also showed lower conversion rate than Ag-impregnated sample. Moreover, 5 vol.% of Ag activation under hydrogen shows the highest conversion rate result. Finally, through high conversion at low temperature, it was considered that the production of NO and $NO_2$, toxic by-products, were effectively inhibited.

Study on Conversion of Carbon Dioxide to Methyl Alcohol over Ceramic Monolith Supported CuO and ZnO Catalysts (세라믹 모노리스에 담지된 CuO와 ZnO계 촉매에 의한 이산화탄소의 메탄올로의 전환에 관한 연구)

  • Park, Chul-Min;Ahn, Won-Ju;Jo, Woong-Kyu;Song, Jin-Hun;Kim, Ki-Joong;Jeong, Woon-Jo;Sohn, Bo-Kyun;Ahn, Byeong Kwon;Chung, Min-Chul;Park, Kwon-Pil;Ahn, Ho-Geun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.97-104
    • /
    • 2013
  • Methyl alcohol is one of the basic intermediates in the chemical industry and is also being used as a fuel additive and as a clean burning fuel. In this study, conversion of carbon dioxide to methyl alcohol was investigated using catalytic chemical methods. Ceramic monoliths (M) with $400cell/in^2$ were used as catalyst supports. Monolith-supported CuO-ZnO catalysts were prepared by wash-coat method. The prepared catalysts were characterized by using ICP analysis, TEM images and XRD patterns. The catalytic activity for carbon dioxide hydrogenation to methyl alcohol was investigated using a flow-type reactor under various reaction temperature, pressure and contact time. In the preparation of monolith-supported CuO-ZnO catalysts by wash-coat method, proper concentration of precursors solution was 25.7% (w/v). The mixed crystal of CuO and ZnO was well supported on monolith. And it was known that more CuO component may be supported than ZnO component. Conversion of carbon dioxide was increased with increasing reaction temperature, but methyl alcohol selectivity was decreased. Optimum reaction temperature was about $250^{\circ}C$ under 20 atm because of the reverse water gas shift reaction. Maximum yield of methyl alcohol over CuO-ZnO/M catalyst was 5.1 mol% at $250^{\circ}C$ and 20 atm.

The Effect of Organic Solvents on the Activity for the Synthesis of 12wt% Co-based FT Catalyst (12wt% Co 담지 FT 촉매 제조시 유기용매가 촉매활성에 미치는 영향연구)

  • LEE, JIYUN;HAN, JA-RYOUNG;CHUNG, JONGTAE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.339-346
    • /
    • 2015
  • The synthesis of Fischer-Tropsch (FT) oil is the catalytic hydrogenation of CO to give a range of products, which can be used for the production of high-quality diesel fuel, gasoline and linear chemicals. This studied catalyst was prepared Cobalt-supported alumina and silica by the incipient wet impregnation of the nitrates of cobalt, promoter and organic solvent with supports. Cobalt catalysts were calcined at $350^{\circ}C$ before being loaded into the FT reactors. After the reduction of catalyst has been carried out under $450^{\circ}C$ for 24h, FT reaction of the catalyst has been carried out at GHSV of 4,000/hr under $200^{\circ}C$ and 20atm. From these experimental results, we have obtained the results as following; In case of $SiO_2$ catalysts, the activity of 12wt% $Cobalt-SiO_2$ synthesized by organic solvent was about 2 or 3 times higher than the activity of 12wt% $Cobalt-SiO_2$ catalyst synthesized without organic solvent. In particular, the activity of the $Cobalt-SiO_2$ catalyst prepared in the presence of an organic solvent P was two to three times higher than that of the $Cobalt-SiO_2$ catalyst prepared without the organic solvent. Effect of Cr and Cu metal as a promoter was found little. 200 h long-term activity test was performed with a $Co/SiO_2$ catalyst prepared in the presence of an organic solvent of Glyoxal solution.