• Title/Summary/Keyword: 달 탐사선

Search Result 89, Processing Time 0.02 seconds

Analysis Methods of Visible and Near-Infrared (VNIR) Spectrum Data in Space Exploration (우주탐사에서의 가시광-근적외선 분광 자료 분석 기법)

  • Eung Seok Yi;Kyeong Ja Kim;Ik-Seon Hong;Suyeon Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.154-164
    • /
    • 2023
  • In space exploration, spectroscopic observation is useful for understanding objects' composition and physical properties. There are various methods for analyzing spectral data, and there are differences depending on the object and the wavelength. This paper introduces a method for analyzing visible & nearinfrared (VNIR) spectral data, which is mainly applied in lunar exploration. The main analysis methods include false color ratio image processing, reflectance pattern analysis, integrated band depth (IBD) processing, and continuum removal as preprocessing before analysis. These spectroscopic analysis methods help to understand the mineral properties of the lunar surface in the VNIR region and can be applied to other celestial bodies such as Mars.

Mathematical Prediction of the Lunar Surface Temperature Using the Lumped System Analysis Method (집중계 해석법을 이용한 달 표면온도 예측)

  • Kim, Taig Young;Lee, Jang-Joon;Chang, Su-Young;Kim, Jung-Hoon;Hyun, Bum-Seok;Cheon, Hyeong Yul;Hua, Hang-Pal
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • The lunar surface temperature is important as a environmental parameter for the thermal design of the lunar exploration vehicles such as orbital spacecraft, lander, and rovers. In this study, the temperature is numerically predicted through a simplified lumped system model for the energy conservation. The physical values required for the analysis of the energy equation are derived by considering the geometric shape, and the values presented in the previous research results. The areal specific heat, which is the most important thermo-physical property of the lumped system model, was extracted from the temperature measurements by the Diviner loaded on the LRO, and the value was predicted by calibration of the analytical model to the measurements. The predicted temperature distribution obtained through numerical integration has sufficient accuracy to be applied to the thermal design of the lunar exploration vehicles.

A Study for Generation of Artificial Lunar Topography Image Dataset Using a Deep Learning Based Style Transfer Technique (딥러닝 기반 스타일 변환 기법을 활용한 인공 달 지형 영상 데이터 생성 방안에 관한 연구)

  • Na, Jong-Ho;Lee, Su-Deuk;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.131-143
    • /
    • 2022
  • The lunar exploration autonomous vehicle operates based on the lunar topography information obtained from real-time image characterization. For highly accurate topography characterization, a large number of training images with various background conditions are required. Since the real lunar topography images are difficult to obtain, it should be helpful to be able to generate mimic lunar image data artificially on the basis of the planetary analogs site images and real lunar images available. In this study, we aim to artificially create lunar topography images by using the location information-based style transfer algorithm known as Wavelet Correct Transform (WCT2). We conducted comparative experiments using lunar analog site images and real lunar topography images taken during China's and America's lunar-exploring projects (i.e., Chang'e and Apollo) to assess the efficacy of our suggested approach. The results show that the proposed techniques can create realistic images, which preserve the topography information of the analog site image while still showing the same condition as an image taken on lunar surface. The proposed algorithm also outperforms a conventional algorithm, Deep Photo Style Transfer (DPST) in terms of temporal and visual aspects. For future work, we intend to use the generated styled image data in combination with real image data for training lunar topography objects to be applied for topographic detection and segmentation. It is expected that this approach can significantly improve the performance of detection and segmentation models on real lunar topography images.

Basic Lunar Topography and Geology for Space Scientists (우주과학자에게 필요한 달의 지형과 지질)

  • Kim, Yong Ha;Choi, Sung Hi;Yu, Yongjae;Kim, Kyeong Ja
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.217-240
    • /
    • 2021
  • Upon the human exploration era of the Moon, this paper introduces lunar topography and geologic fundamentals to space scientists. The origin of scientific terminology for the lunar topography was briefly summarized, and the extension of the current Korean terminology is suggested. Specifically, we suggest the most representative lunar topography that are useful to laymen as 1 ocean (Oceanus Procellarum), 10 maria (Mare Imbrium, Mare Serenitatis, Mare Tranuillitatis, Mare Nectaris, Mare Fecundatis, Mare Crisium, Mare Vaporium, Mare Cognitum, Mare Humorum, Mare Nubium), 6 great craters (Tyco, Copernicus, Kepler, Aristachus, Stebinus, Langrenus). We also suggest Korean terms for highland, maria, mountains, crater, rille, rima, graben, dome, lava tube, wrinkle ridge, trench, rupes, and regolith. In addition, we introduce the standard model for the lunar interior and typical rocks. According to the standard model on the basis of historical impact events, the lunar geological eras are classified as Pre-Nectarian, Nectarian, Imbrian, Erathostenesian, and Copernican in chronologic order. Finally, we summarize the latest discovery records on the water on the Moon, and introduce the concept of water extraction from the lunar soil, which is to be developed by the Korea Institute of Geoscience and Mineral Resources (KIGAM).

Development of a Prototype Mass Spectrometer (질량 분석기의 원형 모델 개발)

  • Jingeun Rhee;Nam-Seok Lee;Sung Won Kang;Seontae Kim;Kyu-Ha Jang;Yu Yi;Ik-Seon Hong;Cheong Rim Choi;Kyoung Wook Min;Jongil Jung
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.86-99
    • /
    • 2023
  • The mass spectrometer, being an essential scientific instrument for uncovering the origin of the solar system and life, has been used since the early 1970s on board spacecraft to obtain information of neutral and ionized elements in the atmosphere and surface of the moon, planets, asteroids, and comets. According to the 4th Basic Plan for the Promotion of Space Development (2023-2027), Korea plans to conduct lunar landing in 2032 and Mars landing in 2045 as the core goals of the plan and focuses on developing the technologies required for unmanned robotic exploration missions. In this regard, it is crucial to develop the technology of a mass spectrometer, which is the most fundamental payload for space exploration for maximized scientific achievements, however never tried before in any domestic space missions. We describe in this paper the principle of a domestically developed quadrupole mass spectrometer, its prototype model, and the test results of its performance. We conclude this paper with intended future improvements.

Europe's Space Exploration and Korea's Space Exploration Strategy from the Perspective of Science and Technology Diplomacy (과학기술외교 관점에서 바라본 유럽의 우주탐사와 우리나라 우주탐사전략)

  • Nammi Choe
    • Journal of Space Technology and Applications
    • /
    • v.2 no.3
    • /
    • pp.195-205
    • /
    • 2022
  • Space exploration is an area where international cooperation takes place more actively than any other space activities such as Earth observation, communication and navigation. This is because a country cannot afford a huge budget to have full infrastructure for deep space exploration, such as a heavy launch vehicle, communication and energy infrastructure, and human habitats, and has learned that it is not sustainable. Korea expressed its willingness to join humanity's epic exploration journey by signing the Artemis Accords in 2021 and launching Danuri lunar orbiter in 2022. The beginning of space exploration means that Korea's space activities have expanded beyond the stage of focusing only on technology development to set norms necessary to accompany other countries and cooperate diplomatically to solve exposed problems. This paper analyzed European space policy and space exploration, which are most actively participating in the Artemis Program and exerting diplomatic power in the space field, from the perspective of science and technology diplomacy. The suggestions for Korea's space exploration strategy from the perspective of science and technology diplomacy were drawn by examining the international cooperation strategies in Europe's space activities ranging from space policy, space strategy, and space exploration program to project units.

Current Status and Future Prospects of Satellite Technology in Korea (우리나라 위성기술 현황 및 전망)

  • Hwang, Do-Soon;Lim, Jae-Hyuk;Jun, Hyung-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.702-709
    • /
    • 2016
  • By means of the our satellite development for the past 20 years, it ensure us to obtain domestic independent development capabilities. In the case of practical-class Low-Earth Orbit(LEO) remote sensing satellites, we become a world-class developer. Furthermore, we acquire the technology to develop domestic-leading geostationary satellites, depending on the mission. Currently, we proceed with the next-generation mid-size satellite development program featuring standard bus for the expansion of the world market and has embarked on the development of lunar orbiter from this year.

Some Theoretical Considerations in Body Tide Calculation (고체지구조석계산에 있어 몇 가지 이론적 고찰)

  • Na, Sung-Ho;Shin, Young-Hong;Baek, Jeong-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.133-139
    • /
    • 2011
  • The largest terms in the solid Earth body tide calculation are second degree spherical harmonic components due to the moon or the sun, and they compose about 98 percent of total contribution. Each degree harmonics of the tidal perturbation should be evaluated through multiplication with distinct Love numbers or their combinations. Correct evaluation of these terms in gravity tide is considered with re-calculated Love numbers. Frequency dependence of Love numbers for spherical harmonic tide upon the order number is discussed. Tidal displacement and tidally induced deviation of the vertical are also evaluated. Essential concepts underlying the body tide calculation are briefly summarized.

Propulsion System for Moon Explorer (달탐사위성 추진시스템)

  • Han, Cho-Young;Lee, Ho-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.155-158
    • /
    • 2008
  • Development of Moon Explorer-1 (orbiter) is supposed to be commenced in 2017 and launched in 2020. In case of Moon Explorer-2 (lander), it would be slated to start in 2021 and launch in 2025. For this reason it is taken for granted to investigate a fundamental propulsion system for a Moon Explorer. In this paper conceptual feasibility and comparison studies are proposed for the propulsion system applicable to a Moon Explorer. Availability of monopropellant/bipropellant/electric propulsion system is compared and analysed as well with precedents overseas. As a result possible candidates for a Moon Explorer propulsion system are suggested.

  • PDF

Feasibility Study of Chemical Propulsion System for Moon Explorer (화학추진시스템의 달탐사위성 적용 가능성 연구)

  • Han, Cho-Young;Kim, Bang-Yeop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.22-29
    • /
    • 2009
  • Development of Moon Explorer-1 (orbiter) is supposed to be commenced in 2017 and launched in 2020. In case of Moon Explorer-2 (lander), it would be slated to start in 2021 and launch in 2025. In this paper conceptual feasibility studies are conducted for the propulsion system applicable to a Moon Explorer. In the first place the availability of monopropellant/bipropellant/electric propulsion system is examined with domestic as well as overseas precedents. Secondly ${\Delta}V$ is estimated by the mission analysis and the propellant budget is calculated accordingly. Subsequently feasibility of a chemical propulsion system for a Moon Explorer is evaluated.