• Title/Summary/Keyword: 단 수

Search Result 12,002, Processing Time 0.038 seconds

Diagnostic Usefulness of Serum Level of Cyfra 21-1, SCC Antigen and CEA in Lung Cancer (폐암에서 혈중 Cyfra 21-1, SCC 항원 및 CEA의 진단적 유용성)

  • Kim, Kyoung-Ah;Lee, Me-Hwa;Koh, Youn-Suck;Kim, Seon-Hee;Lim, Chae-Man;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong;Moon, Dae-Hyuk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.846-854
    • /
    • 1995
  • Background: Cytokeratin 19 is a subunit of cytokeratin intermediate filament expressed in simple epithelia such as respiratory epithelial cells and their malignant counterparts. An immunoradiometric assay is available to detect a fragment of the cytokeratin, referred to as Cyfra 21-1 in the serum. This study was conducted to evaluate the clinical utility of this new marker in the diagnosis of lung cancer compared with established markers of squamous cell carcinoma antigen (SCC Ag) and carcino-embryonic antigen(CEA). In addition, we compared the diagnostic sensitivity and specificity of Cyfra 21-1 with those of SCC Ag in squamous cell carcinoma of the lung. We also measured the level of Cyfra 21-1 in the different stages of squamous cell carcinoma of the lung. Method: We measured Cyfra 21-1(ELSA-CYFRA 21-1), SCC Ag(ABBOTT SCC RIABEAD) and CEA(ELSA2-CEA) in 79 patients with primary lung cancer and in 78 persons as a comparison group including 32 patients with pulmonary tuberculosis, 23 patients with benign lung disease and 23 cases with healthy individual. Cyfra 21-1 is measured by a solid-phase immunoradiometric assay(CIS Bio International, France) based on the two-site sandwich method. SCC Ag is measured by a radioimmunoassay(Abbott Laboratories, USA). CEA is measured by a immunoradiometric assay(CIS Bio International, France). All data were expressed as the mean$\pm$standard deviation. Results: 1) The mean value of Cyfra 21-1 was $18.38{\pm}3.65\;ng/mL$ in the lung cancer and $1.l6{\pm}0.53\;ng/mL$ in the comparison group(p<0.0001). SCC Ag was $3.53{\pm}6.06\;ng/mL$ in the lung cancer and $1.19{\pm}0.5\;ng/mL$ in the comparison group(p<0.01). CEA was $35.03{\pm}13.9\;ng/mL$ in the lung cancer and $2.89{\pm}1.01\;ng/mL$ in the comparison group(p<0.0001). 2) Cyfra 21-1 level in squamous cell carcinoma($31.52{\pm}40.13\;ng/mL$) was higher than that in adenocarcinoma($2.41{\pm}1.34\;ng/mL$)(p<0.0001) and small cell carcinoma($2.15{\pm}2.05\;ng/mL$)(p=0.007). SCC Ag level in squamous cell carcinoma($5.1{\pm}7.68\;ng/mL$) was higher than that in adenocarcinoma($1.36{\pm}0.69\;ng/mL$)(p=0.009) and small cell carcinoma($1.1{\pm}0.24\;ng/mL$) (p=0.024). 3) The level of Cyfra 21-1 was not correlated with the progression of stage in squamous cell carcinoma of the lung. 4) Using the cut-off value of 3.3ng/mL, the diagnostic sensitivity of Cyfra 21-1 was 83% in squamous cell carcinoma, 22% in adenocarcinoma and 17% in small cell carcinoma. The sensitivity of SCC Ag and CEA were 39% and 20%, respectively in squamous cell carcinoma, 11% and 39% in adenocarcinoma, and 0% and 33% in small cell carcinoma. 5) Comparison of the receiver operating characteristics curves(ROC curve) for Cyfra 21-1, SCC Ag and CEA revealed that Cyfra 21-1 showed highest diagnostic sensitivity among them in the diagnosis of lung cancer. Conclusion: Cyfra 21-1 is thought to be a better tumor marker for the diagnosis of lung cancer than SCC Ag and CEA, especially in squamous cell carcinoma of the lung.

  • PDF

Studies on the morphological variation of plant organs of elongating node-part in rice plant (수도 신장 절위 경엽의 형태변이에 관한 연구)

  • 김만수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.1-35
    • /
    • 1969
  • Attempts were made to obtain the fundamental knowledge on the quantitative constitution status of leaves and stem of elongating node-part, and the relationships between these morphological characteristics along with the nitrogen contents of leaves and grain yield were examined varing application amounts of nitrogen in rice plant. I. The agronomic characteristics of leaves and nodes of elongation node-part (4-node parts from the top of stem) were observed at heading stage with 20 leading rice varieties of Kang Won district. The results are summarized as follows: 1. Leaf area magnitude of the flag and the fourth leaf was smaller than that of the second and the third with the average value of flag leaf 18.61 $cm^2$, the second leaf 21.84 $cm^2$, the third 21.52 $cm^2$ and the fourth 18.56 $cm^2$. The weight of leaf blade showed an isotonic tendency with the magnitude of leaf area with the value of the flag leaf 97.0 mg, the second leaf 117.1 mg, the third 115.4 mg, and the fourth 95.3 mg. The weight of each leaf sheath was remarkably larger at the higher node-part than at the lower node-part of the stem with the value of flag leaf sheath 176.3 mg, the second 163.7 mg, the third 163.4 mg and the fourth 123.9 mg. Accordingly, the total leaf weight of each part was larger at the second and the third leaf than at the first and the fourth. Total plant weight of each part (weight of leaf blade, leaf sheath, and culm) also was larger at the middle node-part. 2. Coefficients of variation for the varietal differences of the morphological characteristics of elongating node-part were 12.75% for the leaf area, 15.29% for the weight of leaf blade, 15.90%, for the weight of leaf sheath, 11.42% for the weight of internode, 15.45% for the leaf weight (leaf blade & leaf sheath) and 13.24% for the straw weight. And these coefficient values of the most characteristics were, on the whole, smaller at the second and the third node-part than at the first and the fourth node-part, but the coefficient value of the internode weight was rather small at the third and fourth node-part. 3. Constitutional ratio of each plant organ to the total plant weight in term of dry matter weight (excluding head and root wight) was 39.2% for the leaf sheath, 34.2% for the culm, 26.6% for the leaf blade. And ocnstitutional ratio of leaf sheath in term of dry matter weight was larger at the higher position in contrast with that of culm. 4. Average weight ration of leaf blade to culm, leaf sheath to culm, leaf blades to sheath and the leaf blades to culm plus leaf sheath were 77.7 %, 114.5%, 67.9% and 36.2%, respectively. With regard to the position of the plant organ, the weight ratio of leaf blade to culm and that of leaf sheath to culm were larger at higher part in contrast with that of leaf blade to leaf sheath. 5. Generally, there founded deep relationships between grain yield and each morphological characteristics of plant organ of elongating node-part as follows; Correlation coefficient between total area of 4 leaves (from flag to the fourth leaf) and grain yield was ${\gamma}$=0.666$^{**}$ In regard to the position of leaves, correlation coefficient values of flag, the second, the third and the fourth leaf were ${\gamma}$=0.659$^{**}$, ${\gamma}$=0.609$^{**}$, ${\gamma}$=0.464$^{*}$ and ${\gamma}$=0.523$^{*}$, respectively. Correlation coefficient between total weight of leaf blades and the grain yield was ${\gamma}$=0.678$^{**}$. In regard to the position of leaves, that of flag leaf was ${\gamma}$=0.691$^{**}$, and ${\gamma}$=0.654$^{**}$ for the second leaf, ${\gamma}$=0.570$^{**}$ for the third, and ${\gamma}$=0.544$^{**}$ for the fourth. Correlation between the weight of leaves (blade weight plus sheath weight) and the grain yield showed similar values. In the relationship between plant weight and grain yield there also was significant correlation, but with highly significant value only for the first node-part. There appeared correlation between total weight of leaf sheath and grain yield with the value of ${\gamma}$=0.572$^{**}$ and in regard to the position of each leaf sheath the values were ${\gamma}$=0.623$^{**}$ for the flag leaf, ${\gamma}$=0.486$^{**}$ for the second leaf, ${\gamma}$=0.513$^{**}$ for the third, ${\gamma}$=0.450$^{**}$ for the fourth. However, there was no significant correlation between culm weight and grain yield. 6. With respect to in gain yield, varietal differences in magnitude of leaf area, weight of leaf blade, leaf weight per unit area, weight of leaf sheath, culm weight, total leaf and stem weight were larger in the case of high yielding varieties and decreased in accordance with decreasing yield. And this tendency also was shown in the varietal differences of magnitude of each part. Variation in magnitude of each part for the leaf area, weight of leaf blade, culm weight was significantly small in high yielding varieties compared to low yielding varieties. 7. Plant constitutional ratio of each organ of the elongating node-part in term of weight magnitnde varied to som extent according to varieties indicating leaf blade 27.6%, leaf sheath 39.5%, culm 32.9% in the case of high yielding varieties, leaf blade 25.5%, leaf sheath 38.1%, culm 36.4% in the case of low yielding varieties, and medium yielding varieties showed intermadiate values. 8. Far higher values of the weight ration of leaf blade to culm and leaf sheath to culm were given to the high yielding varieties compared to low yielding varieties. And medium yielding varieties showed intermadiate values. II. Effects of application rate of nitrogen on the morphological characteristics of the elongating node-part, nitrogen content of leaf blade, and their relation with the grain yield of the rice were observed with 3 rice varieties; Shin No.2, Shirogane, and Jinheung varying application amounts of nitrogen as 8kg, 12kg and 16kg per 10 are. 1. As for the variation of morphological magnitude s affected by the amounts of nitrogen application, total leaf area (4 leaves from the flag leaf) increased to 16.5% at 12kg N plot, and about 30% at 16kg N polt compared to 8kg N plot and total weight of leaf blade also increased to similar extent, respectively, in contrast with weight of leaf sheath increasing 4.9% and 7.8%, respectively. However, the weight of culm decreased to 1.5% and 11.2%at the 12kg N plot and 16kg N plot, respectively, and these decreasing rate was noted at the nodes of lower part. 2. As for the verietal differences in variation of morphological magnitude as affected by the amount of nitrogen fertilization, leaf area coefficient value of variation of the total leaf area was 15.40% for Shin No. 2, 12.87% for Shirogane, and 10.99% for Jinheung. With respect to the position of nodes, the largest variation of leaf blade magnitude was observed at the fourth for Shin No. 2, the second for Shirogan, and flag leaf for Jinheung. And there also was an isotonic varietal difference in the weight of leaf blade. Variation in total culm weight showed varietal differences with the coefficient value of 7.72% for Shin No.2, 12.11% for Shirogane, and 0.94% for Jinheung. There also was varietal differences in the variation according to the position of nodes. 3. Variation of each elongating node-part related to the fertilization amount decreased with the increase of fertilization amount in the items of leaf area, weight of leaf sheath, culm weight, but weight of leaf sheath varied more at heavier fertilization than at others. 4. Constitutional ratio of each organ excluding head also varied with fertilization amount; constitutional ratio of leaf blade increased much with the increasing amount of fertilization in contrast with the response of culm eight. However, constitutional ration of the weight of leaf sheath was not much affected. 5. Lower value of the ration of leaf blade to culm was given to the 8kg N per 10 are plot, and the ratio of leaf blade to leaf sheath decreased with the increasing amount of fertilization in contrast with the increase in the ratio of leaf sheath to culm. however, the ration of leaf blade to culm plus leaf sheath decreased. 6. With the increase of nitrogen fertilization, leaf area, weight of leaf blade and leaf sheath increased. Accordingly, grin yield also increased to some extent. It was noted that culm weight was changed inversely to the changes in grain yield, but the degree of this variation varied with varietal characteristics. 7. Nitrogen content of leaves at heading and fruiting stage varied with the fertilization amount, and average nitrogen content of leaves of the varieties used 2.19%, 2.49% and 2.74% at the plot of 8kg N, and 12kg N and 16kg N per 10 are, respectively, at heading time, and 0.80%, 0.92% and 1.03% at each plot at fruiting stage. Thus, nitrogen content of leaves increased much with the increasing amount of fertilization, and higher value was given to the leaves on the higher position of elongating node-part. 8. There also was variation of nitrogen content of leaves in accordance with the varieties. However higher grain yield was obtained from the plants retaining higher nitrogen content in leaves at heading or fruiting stage.

  • PDF