• Title/Summary/Keyword: 단회전식 축류홴

Search Result 2, Processing Time 0.013 seconds

Numerical and Experimental Analyses of the Aerodynamic Characteristics of a Counter Rotating Axial Fan (엇회전식 축류홴의 공력 특성에 관한 전산 해석 및 실험)

  • Cho, Jin-Soo;Won, Yu-Phil;Lee, Moon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.325-337
    • /
    • 2000
  • A study was done on the numerical and experimental analyses of the aerodynamic characteristics of a counter rotating axial fan. The numerical analysis uses the frequency domain panel method developed for the aerodynamic analysis of interacting rotating systems, which is based on the unsteady lifting surface panel method. Each stage of interaction involves the solution of an isolated rotor, the interaction being done through the Fourier transform of the induced velocity field. Numerical results showed good agreements with other experimental data for single and counter rotating propeller systems. And they were compared with the experimental results of the counter rotating axial fan studied in the present paper. The performance test was carried out based on the Korean Standard (KS B 6311). It was focused on the relative efficiency increase of a counter rotating system for a single rotating one, and effects of the axial distance between the front and rear rotors on overall fan performances were investigated. As a result, it was shown that the counter rotating axial fan has the efficiency 14% higher than the single rotating one at peak efficiency points.

Experimental Study on the Aerodynamic Characteristics of a Two-Stage and a Counter-Rotating Axial Flow Fan (2단 축류홴과 엇회전식 축류홴의 공력특성에 관한 실험적 연구)

  • Cho, Jin-Soo;Cho, Lee-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1281-1292
    • /
    • 2001
  • Experiments were done for the comparison of performance and flow characteristics between a two -stage axial flow fan and a counter-rotating axial flow fan. Each stage of the two -stage axial flow fan used fur the present study has an eight bladed rotor and thirteen slater blades. The front and the rear rotor of the counter - rotating axial flow fan have eight blades each and are driven by coaxial counter ro latins shafts through a gearbox located between the rear rotor and the electric motor. Both of the two axial fan configurations have identical rotor blades and the same operating condition fur the one -to-one comparison of the two. Performance curves of the two configurations were obtained and compared by varying the blade pitch angles and axial gaps between the blade rows. The fan characteristic curves were obtained following the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fa n flow characteristics were measured using a five-hole probe by a non-nulling method. The velocity profiles between the hub and tip of the fans were measured and analyzed at the particular operating condition s of peak efficiency, minimum and maximum pressure coefficients. The peak efficiency of the counter-rotating axial fan was improved about 2% respectively, compared with the two stage axial fan. At the minimum pressure coefficient point of the two stage axial fan, the fan inlet flow patterns show that axial velocity highly decreased in the vicinity of the blade tip region. Also, the reverse flow took place at the blade tip.