• Title/Summary/Keyword: 단층지역

Search Result 622, Processing Time 0.027 seconds

Numerical Analysis of Stress Regimes in and around Inactive and Active Fault Zones (비활성 그리고 활성 단층지역 내부와 주변에서의 응력장에 대한 수치적 분석)

  • Jeong, Woo-Chang;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.117-125
    • /
    • 2001
  • This paper presented the analysis of stress regimes in and around inactive and active fault zones. The stress regime in the vicinity of an existing inactive fault zone is dependent on the orientation of the fault with respect to the current stress field and the contrast between the elastic properties of the faulted rock and those of the surrounding rock. In the analysis of stress regimes around an active fault zone, if the yielding stress is exceeded during loading, the localized shearing in a fault zone will result in weakness with mean stresses in the fault becoming lower than those in the surrounding rock. It can be expected that such stress gradients will induce fluid flow towards the faults zone.

  • PDF

Expected Segmentation of the Chugaryung Fault System Estimated by the Gravity Field Interpretation (추가령단층대의 중력장 데이터 해석)

  • Choi, Sungchan;Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.743-752
    • /
    • 2021
  • The three-dimensional distribution of the fault was evaluated using gravity field interpretation such as curvature analysis and Euler deconvolution in the Seoul-Gyeonggi region where the Chugaryeong fault zone was developed. In addition, earthquakes that occurred after 2000 and the location of faults were compared. In Bouguer anomaly of Chugaryeong faults, the Pocheon Fault is an approximately 100 km fault that is extended from the northern part of Gyeonggi Province to the west coast through the central part of Seoul. Considering the frequency of epicenters is high, there is a possibility of an active fault. The Wangsukcheon Fault is divided into the northeast and southwest parts of Seoul, but it shows that the fault is connected underground in the bouguer anomaly. The magnitude 3.0 earthquake that occurred in Siheung city in 2010 occurred in an anticipated fault (aF) that developed in the north-south direction. In the western region of the Dongducheon Fault (≒5,500 m), the density boundary of the rock mass is deeper than that in the eastern region (≒4,000 m), suggesting that the tectonic movements of the western and eastern regions of the Dongducheon Fault is different. The maximum depth of the fracture zone developed in the Dongducheon Fault is about 6,500 m, and it is the deepest in the research area. It is estimated that the fracture zone extends to a depth of about 6,000 m for the Pocheon Fault, about 5,000 m for the Wangsukcheon Fault, and about 6,000 m for the Gyeonggang Fault.

Engineering Geological Geotechnical Characteristics of Newly Constructed Road between the Yangsan Fault and the Dongrae Fault (양산단층과 동래단층 사이를 통과하는 지방도의 지질공학적 특성 연구)

  • 이병주;선우춘
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.193-205
    • /
    • 2003
  • Fine grained granite, porphyritic granite and biotite granite together with intruded and extruded andesitic rocks are distributed in the study area which is bounded by the Yangsan and Dongrae faults. A new domestic road is being constructed along the area between the two major faults. The NNE trending Bupki fault and NE trending Myungkog fault are also developed within the area cross the road. The sheeting joints with dips of less than 30 degrees are only developed in the area of granite outcrop. High angle joints can be divided into 3 sets, such as, NE trending, NW trending and nearly EW trending joints. The joint space is mostly more than 20cm and the joint compressive strength is more than 100 MPa. These data show that even though the study area is situated between large faults, the ground condition is good because the damage zone of the Yangsan and Dongrae faults is relatively narrow.

A Study on Flow Variation with Geometrical Characteristics of Fault Zones Using Three-dimensional Discrete Fracture Network (3차원 이산 균열망 모형을 이용한 단층지역의 기하학적 특성에 따른 흐름 변화에 관한 연구)

  • Jeong, Woo Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.326-326
    • /
    • 2016
  • The fault can be defined, in a geological context, as a rupture plane showing a significant displacement generated in the case that the local tectonic stress exceeds a threshold of rupture along a particular plane in a rock mass. The hydrogeological properties of this fault can be varied with the spatial distribution and the connectivity of void spaces in a fault. When the formation of fault includes the process of the creation and the destruction of void spaces, a complex relation between the displacement along the fault and the variation of void spaces. In this study, the variation of flow with the geometrical characteristics of the fault is simulated and analyzed by using the three-dimensional discrete fracture network model. Three different geometrical characteristics of the faults are considered in this study: 1) simple hydraulic conductive plane, 2) damaged zone, and 3) relay structure of faults.

  • PDF

Quaternary Tectonic Activities and Seismic Stability of Suryum Fault and Yupchon Fault, SE Korea (수렴단층과 읍천단층의 제4기 활동 및 지진 안정성)

  • Hwang, Sangill;Shin, Jaeryul;Yoon, Soon-Ock
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.4
    • /
    • pp.351-363
    • /
    • 2012
  • Although the Korean peninsula has been considered as a largely aseismic region compared with the surrounding high seismic areas such as North China and Japan, there are more than thirty Quaternary faults reported so far, which are mostly centered in the southeastern peninsula. Structural studies of active faults exposed in Yangnam-myeon of Gyeongju, SE Korea are largely interpreted to post date the late Quaternary, suggesting that the NE-trending reverse faults may result from the active stress regime in the peninsula. The prevailing present-day E-W $S_{Hmax}$ orientations in the peninsula are consistent with the nature of plate forcing stemming from the convergence between the Indo-Australian and Eurasian plates. It is clear that the Quaternary faults have been reactivated, although resolving more elaborate time intervals responsible for a future rupture remains a significant challenge. This study contributes to better assess many of potential seismic hazards in the study area, in particular, in terms of seismic stability for foundation of nuclear power plant.

  • PDF

Electrical Resistivity Surveys in Yangsan Fault Area near Kyongju (경주 부근 양산단층 지역에서의 전기비저항 탐사)

  • Lee, Gi Hwa;Han, Won Seok
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.4
    • /
    • pp.259-268
    • /
    • 1999
  • Electrical resistivity surveys were conducted in the areas between Buji-ri and Seoak-dong, and between Nawon-ri and Yangdong-ri, Kyongju in order to investigate the geoelectric structure of the nothren part of the Yangsan Fault. In the area between Buji-ri and Seoak-dong south of Kyongju, the fracture zone east of the inferred fault develops more deeply, without significant north-south variation in depth, than west. In the area between Nawon-ri and Yangdong-ri north of Kyongju, the fault zone seems to be developed along the Hyungsan-river, and the resistivity structure west of the river is more affected by the fracture zone than east. Interpreted section of dipole-dipole survey conducted in Homyung-ri shows vertical contact of the Yangsan Fault. It appears that the boundary between the northern and central segment of the Yangsan Fault is located in the north of study areas since there is no significant variation in electrical resistivity structure near Kyongju.

  • PDF

A Study on the Structure of the Yangsan Fault In the southern part of Kyeongju (경주 남부지역의 양산단층의 구조에 관한 연구)

  • Kim, Yeonghwa;Lee, Kiehwa
    • Economic and Environmental Geology
    • /
    • v.20 no.4
    • /
    • pp.247-260
    • /
    • 1987
  • As a part of study on the structure of the Yangsan Fault, geological and VLF EM studies have been made in the fault area approximately between Kyeongju and Eonyang. The result provides comparatively clear information on the trace of the fault and extent of fracture zone as well as the structural characteristics of the Yangsan Fault area. The location of fault trace identified from this VLF EM study coincides well in general with that expected from geological information of the area. And the extent of fault fracture zone turn out to be characterized by U shaped low resistivity zone whose width increases from north to south.

  • PDF

Bedrock Depth Variations and Their Applications to identify Blind Faults in the Pohang area using the Horizontal-to-Vertical Spectral Ratio (HVSR) (포항지역 HVSR에 의한 기반암 심도와 단층 식별 연구)

  • Kang, Su Young;Kim, Kwang-Hee
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.188-198
    • /
    • 2022
  • Some deep faults do not reach the ground surface and are seldom recognized. Gokgang Fault area in the east of the Heunghae area of the Pohang basin has been selected to confirm the feasibility of the Horizontal-to-Vertical Spectral Ratio (HVSR) approach to identify blind faults. Densely spaced microtremor data have been acquired along two lines in the study area and processed to obtain resonance frequencies. An empirical relationship between the resonance frequency and the bedrock depth was proposed using borehole data available in the study area. Resonance frequencies along two lines were then converted to bedrock depths. The resulting depth profiles show significant lateral variations in the bedrock depth. As expected, considerable variation in the resonance frequency is observed near the Gokgang fault. The depth profiles also present additional significant variations in the resonance frequencies and the bedrock depths. The feature is presumably related to a blind fault that is previously unknown. Therefore, this case study confirms the feasibility of the HVSR technique to identify faults otherwise not recognized on the surface.

Displacement of Dongducheon and Wangsukcheon Fault Observed by Gravity Field Interpretation (중력장 해석으로 관측된 동두천 및 왕숙천 단층의 변위)

  • Sungchan Choi;Sung-Wook Kim;Eun-Kyeong Choi;Younghong Shin
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.73-81
    • /
    • 2024
  • To estimate the tectonic displacement of the Chugaryeong Fault System (CFS), gravity surveys were conducted along the Dongducheon fault (DF) and the Wangsukcheon fault (WF). A total of 1,100 stations for the DF and WF regions have been added to the current gravity database. The results of the gravity interpretation indicate that (1) the dextral displacement of the DF is about 3,000 m, similar to the tectonic displacement (2,900-3,100 m) shown in the geological map. (2) The dextral displacement of the WF is about 3,200 m. (3) Taken together, the tectonic displacement of the CFS is estimated to be about 3,000 m on average. To investigate more accurate tectonic displacement of the CFS, further gravity surveys is planned for the Pocheon fault, Gyeonggang fault, and Inje fault.

Identification of the Singal Fault Zone in the Kiheung Reservoir Area by Geotechnical Investigations (기흥저수지 지역의 지반조사를 통한 신갈단층대 확인)

  • Gwon, Sun-Dal;Kim, Sun-Kon;Lee, Soung-Han;Park, Kwon-Gyu
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.295-306
    • /
    • 2012
  • In this study, the Singal fault zone in the Gyeonggi massif is identified in the Kiheung area. Geotechnical investigations were carried out to locate and characterize of the Singal fault zone in the Kiheung reservoir area. The N-S striking Shingal fault is known to be a Riedel-type strike-slip fault within the Choogaryung rift. Along the fault zone, 62 bore holes were drilled and electrical resistivity survey of about 11km, and vibroseis seismic refraction and reflection survey of about 500m were done. From the result of investigations, it is found that the fault zone, consisting mainly of gouge and breccia, has maximum width of 300 meters with anastomosing geometry of secondary fractures developed subparallel to the fault zone. We interpret these geometric features to be the result of structural development of flower-structure type at the restraining band of strike-slip fault. However, there are uncertainties of this interpretation because there are virtually no outcrops in the area. Further investigation to understand geometric features and linkage style of the fault zone.