• Title/Summary/Keyword: 단조 시뮬레이션

Search Result 65, Processing Time 0.031 seconds

Reduced Finite Element Simulation of Cold Forging Processes Based on the Forming Experiment (성형실험을 통한 냉간단조 공정의 단축 유한요소 시뮬레이션)

  • Lee, Chung-Ho
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.395-399
    • /
    • 1997
  • There exists a certain functional relation between Vickers hardness and flow stress in the strain-hardened material. Using this relation, the Vickers hardness values in the strain-hardened material can be converted into the flow stress values in good approximation. Therefore, the information about the flow stress distribution in the material can be easily acquired through a forming experiment. That makes it possible to simulate the process state for a critical moment of cold forging under the given boundary conditions very quickly without calculating the foregoing history of the actual deformation from the beginning.

  • PDF

The Effect of Strain Rate and Temperature on Plastic Deformation of a Metal (변형률 속도와 온도가 금속의 소성변형에 미치는 영향)

  • 김기태;조윤호;백응율
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1486-1494
    • /
    • 1991
  • 본 연구에서는 분말단조 공정의 유한요소 컴퓨터 시뮬레이션을 위한 기초연구 로 다공질예비성형체의 기지(matrix)인 합금강의 변형률 속도와 온도에 따른 일축 압 축하의 열-점소성 거동을 조사하였다. 변형률 속도와 온도의 영향을 동시에 고려하 기 위하여 변형률 속도 .epsilon.=$10^{-4}$, $10^{-2}$$10^{-1S-1}$과 온도범위 800~ 1200.deg. C에 대하여 실험하였다.

Precise Forging Simulation by a Local remeshing Technique Assisted by User-Interface Capabilities (사용자 개입 기능이 지원된 국부 요소망재구성 기법을 이용한 정밀 단조시뮬레이션)

  • C. H. Ryu;M. S. Joun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.90-93
    • /
    • 1999
  • In this paper a local remeshing technique assisted by user-interface capabiities is presented for precise forging simulation. The rigid-plastic finite element formulation is introduced and the basic approach to the new local remeshing technique is presented. A piercing process in cold forging is simulated by the presented technique and the results are compared in detail.

  • PDF

Intelligent Simulation of Three-Dimensional Forging Process (삼차원 단조공정의 지능적 시뮬레이션)

  • Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.155-159
    • /
    • 2007
  • We conduct intelligent simulation of three-dimensional forging processes in this paper. A new remeshing technique is employed for this purpose. Not only the state variables including strain and strain-rate but also the geometrical features including die-material contact conditions and the characteristic lines or surfaces are taken into account during remeshing. The presented approach is applied to the Baden-Baden benchmark test example and its influence on the simulated results is discussed particularly in terms of the deformed shape with emphasis on the characteristic line.

  • PDF

Computer Simulation of Complex Hot Forging Processes by a Forging Simulator Based on Finite Volume Method (유한체적법에 근거한 단조공정 시뮬레이터를 이용한 난형상 열간단조 공정의 컴퓨터 시뮬레이션)

  • Kim, B.T.;Eom, J.G.;Choi, I.S.;Lee, M.C.;Park, S.Y.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.187-192
    • /
    • 2007
  • The finite volume method for forging simulation is examined to reveal its possibility as well as its problem in this paper. For this study, the finite volume method based MSC/SuperForge and the finite element method based AFDEX are employed. The simulated results of the homogeneous compression obtained by the two softwares are compared to indicate the problems of the finite volume method while several application examples are given to show the possibility of the finite volume method fur simulation of complex hot forging processes. It is shown that the finite volume method can not predict the exact solution of the homogeneous compression especially in terms of forming load and deformed shape but that it is helpful to simulate very complex forging processes which can hardly be simulated by the conventional finite element method.

Comparison of Delay Estimates for Signalized Intersection (신호교차로 지체 산정 비교)

  • Jo, Jun-Han;Jo, Yong-Chan;Kim, Seong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.67-80
    • /
    • 2005
  • In this paper, the primary objective of the research are to review the methods currently avaliable for estimating the delay incurred by vehicles at signalized intersections. The paper compares the delay estimates from a deterministic queueing model, a model based on shock wave theory , the steady-state Webster model, the queue-based models defined in the 1994 and 2001 version of the High way Capacity Manual, in addition to the delays estimated from the TRANSYT-7F macroscopic simulation and NETSIM microscopic simulation. More especially, this paper is to compare the delay estimates obtained using macroscopic and microscopic simulation tools against state-of-the practice analytical models that are derived from deterministic queueing and shock wave analysis theory. The results of the comparisons indicate that all delay models produce relatively similar results for signalized intersections with low traffic demand, but that increasing differences occur as the traffic demand approaches saturation. In particular, when the TRANSYT-7F and NETSIM are compared, it is highly differences as approach for traffic condition to over-saturation. Also, the NETSIM microscopic simulation is the lowest estimates among the various models.

Calculation of the Detection Range for a Given Cumulative Probability in Airborne Surveillance Radars (탐색 레이다에서 누적확률에 기인한 탐지거리 계산에 관한 연구)

  • Kim, Eun Hee;Roh, Ji-Eun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.24-27
    • /
    • 2018
  • The performance measure of airborne radars is the range at which the cumulative probability of detection has some specified value, because the per-scan detection probability is an oscillatory function of the target range in airborne radars operating with the dynamic clutter environment. As a result, no one range, at which the per-scan detection probability has a given value, can give a meaningful description of the range performance. In this paper, we provide the equation to calculate the cumulative detection probability and show that the result of Monte Carlo simulation is same as the calculated value in a simple scenario. This verified Monte Carlo model will be used to evaluate the performance of airborne radars in various operating scenarios, at which the numerical calculation is difficult.

Computer Simulation of Upsetter Forging Processes that uses Finite Volume Method (유한체적법을 이용한 업셋터 단조공정의 컴퓨터 시뮬레이션)

  • Kim, H.T.;Park, S.Y.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.170-175
    • /
    • 2007
  • The finite volume method for forging simulation is examined to reveal its possibility as well as its problem in this paper. For this study, the finite volume method based MSC/SuperForge and the finite element method based AFDEX are employed. The simulated results of the homogeneous compression obtained by the two softwares are compared to indicate the problems of the finite volume method while several application examples are given to show the possibility of the finite volume method for simulation of upsetter forging processes. It is shown that the finite volume method can not predict the exact solution of the homogeneous compression especially in terms of forming load and deformed shape but that it is helpful to simulate very complex forging processes which can hardly be simulated by the conventional finite element method.

  • PDF

Forging Simulation of a Micro-Former Forging Process of an ABS Part (ABS 용 부품의 마이크로 포머단조공정 시뮬레이션)

  • Choi, I.S.;Yoo, S.W.;Park, S.G.;Yoon, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.165-169
    • /
    • 2007
  • In this study, the factors that have strong relationship with size effects on forging simulation are investigated and then a dimensionless concept is implemented into the forging simulator. The approach is applied to simulating a micro former forging process of which sequence involves a piercing process to make a hole of 0.7mm diameter of the product whose maximum diameter is 3mm. The simulated results are discussed to reveal the size effect in forging simulation.

  • PDF