• Title/Summary/Keyword: 단조 가력 실험

Search Result 28, Processing Time 0.022 seconds

Flexural Strength Evaluation of Steel Plate Concrete Shear wall subject to Monotonic Loading (단조하중을 받는 SC 전단벽의 휨강도 평가)

  • Kwon, Min-Ho;Kim, Jin-Sup;Seo, Hyun-Su;Lim, Jeong-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.9-14
    • /
    • 2013
  • In this study, flexural strength properties of SC shear walls were investigated through static pushover test. Failure modes and stiffness characteristics of SC shear walls under lateral loads were inspected by analyzing the experimental results. Main failures of unstiffened SC shear walls were found to be the type of bending shear failure due to the unbonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC shear walls.

An Experimental Study of the Composite Slab under a Repeated Loading (단조 반복하중이 작용하는 합성슬래브의 거동에 대한 실험적 연구)

  • Eom, Chul Hwan;Kim, Hee Cheul;Park, Jin Young;Seo, Sang Hoon
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.143-148
    • /
    • 2007
  • The application of metal deck floor system is increasing gradually and especially for office buildings. In the cases of large parking structures and storage structures, the construction period and the cost can be reduced. Also the steel deck system can prevent the crack of a floor and reduce the retrofit expenses. However, the floor should stand for the repeated truck load which is relatively heavier repeated loading. The mechanical behavior of a slab under repeated load is also different from the static loading state. An evaluation of a structural capacity was performed in this study through the dynamic capacity evaluation experiment for an application of a composite deck floor system as a parking structure slab. The period of repeated loadings were set up as 25years and 960,000 times monotone cyclic loads were applied at the center of the specimens. The tension crack propagation and patterns at the center of specimens were examined.

Stress Distribution in Construction Joint of Prestressed Concrete Bridge Members with Tendon Couplers (고강도 철근콘크리트 보-기둥 외부 접합부의 전단 거동에 관한 실험)

  • Park Ki-Choul
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.535-542
    • /
    • 2005
  • Two series of experiments on the performance of beam-column joints in High-Strength Reinforced concrete frames were carried out. Main experimental parameters were : concrete strength, column axial load and amount of joint hoop reinforcement. Test result showed that the ultimate shear strength of exterior joints increased of column axial compressive force and the amount of the joint hoop reinforcements. Through the regression analysis on the 24data, the following equation is obtained $jv_u=(2.935{\times}10-3\;{\rho}jw{\cdot}fy\;+\;0.365){\sqrt{f_{ck}}}$

Compressive Strength of Diagrid Node Using H-Shape Steel (H현강 Diagrid 접합부의 압축내력 단가)

  • Ju, Young-Kyu;Park, Soon-Jeon;Kim, Kyoung-Hwan;Chang, In-Hwa;Kim, Sang-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.91-99
    • /
    • 2008
  • As number of the buildings increases, it shows new trends such as twisted, tilted, taperer shape. As a structural solution for the new trend buildings, diagonal grid (Diagrid) structure was developed. Though a few buildings was built using diagird system, the structural performance of the corresponding node was not clearly identified. Therefore, experimental evaluation is needed to apply diagrid for higher buildings. In this study, the node was tested depending on the amounts of welding materials. As a result, the partial welding can provide enough strength for the node as required in the full penetration welding under monotonin compressive loadings.

  • PDF

Bond Strength of Grout-Filled Splice Sleeve Considering Effects of Confinement (구속효과를 고려한 모르타르 충전식 철근이음의 부착강도)

  • Kim, Hyong-Kee;Ahn, Byung-Ik
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.615-622
    • /
    • 2003
  • The purpose of this study is to propose the more reasonable equation of bond strength of grout-filled splice sleeve. To accomplish this objective, total 60 full-sized specimens were tested under monotonic loading. The experimental variables are compressive strength of mortar, embedment length and size of reinforcing bars. Following conclusions are obtained; 1) If the adequacy of existing equations which estimate the bond strength of grout-filled splice sleeve are investigated, they underestimate the bond strength of grout-filled splice sleeve by 8-18%. Also the existing equations have a tendency to underestimate with decrease in the embedment length of reinforcing bars. 2) From the test result of bond failure, the equation which estimates the confining pressure of grout-filled splice sleeve was proposed by making multiple regression analyses of which independent variables are embedment length of reinforcing bars and compressive strength of mortar. This equation predicted the measured bond capacity of this test more accurately than existing equations and eliminated the deviation according to the embedment length of reinforcing bars.

Bending Performance Evaluation of Hybrid Composite Beam with Low Depth and New Shape (춤이 작은 신형상 고성능 하이브리드 합성보의 휨성능 평가)

  • Kim, Sung Bae;Cho, Seong Hyun;Oh, Kwang Soo;Jeon, Yong Han;Choi, Young Han;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.151-162
    • /
    • 2016
  • This study developed the shape of low depth new shape high performance hybrid composite beam which is taken strengths and compensated the defect of composite beam and hybrid beam. Also, this study performed the monotonic test to evaluate the bending performance of Low depth shape by creating 12 bending specimens. Bending performance test result showed that capacity of the beam was increased stably. Also, it is possible to apply the existing evaluation equation(KBC 2009) of composite beam. Mechanical properties and structural performance of materials are considered when high-strength steel ($F_y=650MPa$) is applied to the bottom plate.

An Experimental Study on Structural Performance of SFRC filled Built-up Square Columns (강섬유 콘크리트가 충전된 용접조립 각형강관 기둥의 구조성능 실험연구)

  • Kim, Sun Hee;Yom, Kong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • This study suggests mixing steel fibers in concrete to secure the toughness of the columns. Therefore, to evaluate the structural behavior of welded built-up square columns filled with steel fiber reinforced concrete, ten stub column specimens were fabricated for compressive loading test with variables of steel fiber mixing ratio and loading condition. It is deduced that the steel fibers continue to provide tensile strength even after the concrete cracks and thus improve the strength and behavior of the column when bending moment is applied to it. A small amount of steel fibers can improve compressive strength and bending strength and thus produce economically efficient results when employed in structural design.

Flexural Capacity and CO2 Reduction Evaluation for Composite Beam with Weight Reducing Steel Wire-Integrated Void Deck Plate slab (자중저감 철선일체형 중공 데크플레이트 슬래브를 사용한 합성보의 휨내력 및 CO2 감소량 평가)

  • Kim, Sang-Seop;Park, Dong-Soo;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.313-323
    • /
    • 2012
  • The purpose of this study is to evaluate $CO_2$ reduction and the flexural performance of steel wire-integrated void deck plate slabs that were inserted in omega-shaped steel plates to reduce concrete and welded H-section beams. The void deck plate slab can secure the structure, not only reducing the weight of the building but it is also eco-friendly. Therefore, this study evaluated the flexural performance of the composite beam by conducting a monotonic loading test with the use of actuators. It quantitatively evaluated the $CO_2$ emission based on earlier studies. The main test parameters are the concrete thickness of upper slabs, and the interrupted width of the omega-shaped steel plate. The result of the test showed that the welded H-section beam applied steel wire-integrated void deck plate slabs that were inserted into the omega-shaped steel plate declined in flexural performance on the composite beam after reducing concrete volume. Likewise, it is effective in reducing $CO_2$.

An Experimental Study on the Behaviours of Hollow CFT Column Subjected to Axial Load (중공 콘크리트충전 각형강관 기둥의 거동에 관한 연구 (I. 중심 압축실험))

  • Kim, Cheol-Hwan;Kim, Jong-Kil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.69-76
    • /
    • 2006
  • Concrete Filled Steel Tube (CFT) system is advantageous because it increases the load-carrying capacity without increasing the size of column. However CFT system has many benefits, it is not applied to field generally because of its heavyweight and difficulty of concrete filling method. As a solution to these problems, we proposed concrete filled steel tube column with hollow made by factory-manufactured PC method. The hollow concrete filled steel tube system is expected to obtain the high strength and high capacity of deformation despite it is a lightweight. This study deals with mechanical properties, strength and deformation, of hollow concrete filled steel tube subjected to axial load. 9 specimens were tested to examine mechanical properties closely, and the following results were obtained: All specimens basically showed higher initial rigidity and maximum strength with increased concrete filling rate. And most specimens showed almost linear behavior until around 80% of maximum strength regardless of filling rate, it is estimated that the elastic range is up to a half of the maximum strength which is the yield strength level.

  • PDF

Analytical Study on Relationship Between Moment Transfer Efficiency of a Beam Web and Strain Concentration at Steel Moment Connections (철골 모멘트 접합부에서 웨브의 모멘트 전달효율과 변형도 집중과의 관계에 관한 해석적 연구)

  • Kim, Young Ju;Oh, Sang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.695-703
    • /
    • 2004
  • In this paper, the results of monotonic loading analysis with four steel models and one composite model were shown. The effect that moment transfer efficiency of a web and strain concentration at a steel beam-to-column connections was investigated. Analysis results showed that the moment transfer efficiency of the analytical model with box-column was poor when comparing to model with H-column due to out-of-plane deformation of the box-column flange. The presence of scallop, thin plate of box column and floor slabs was also a reason of the decrease of moment transfer efficiency, which would result in a potential fracture of the steel beam-to-column connections. Analytical results were compared with experimental results based on previous test. As a result, the deformation capacity of connections with a box-column or a floor slab decreased due to the poor moment transfer efficiency and the strain concentration of beam flange in the vicinity of the steel beam-to-column connections based on the experimental data.