• Title/Summary/Keyword: 단일 증발액적

Search Result 13, Processing Time 0.029 seconds

A Study of Droplet Combustion Characteristics with Mulicomponent Fuel (다조성 연료 액적의 연소특성에 관한 연구)

  • 김봉석
    • Journal of Energy Engineering
    • /
    • v.10 no.2
    • /
    • pp.153-160
    • /
    • 2001
  • 본 연구에서는 고온 분위기 온도 및 대기압 하에서 액적의 급속가열과 연소가 가능한 고온 연소로 장치와 고속도 비디오 카메라를 이용하여 다조성 단일 액적 연소에 대해 고찰하였다. 그 결과 저비점 성분을 혼합한 경유의 액적은 기본적으로 입경의 2승 법칙에 의해서 감소되었으며, 그 과정에서 입경이 일시적으로 급속히 감소하는 현상이 보여짐과 더불어 연소기간도 단축되었다. 즉, 저비점 성분을 혼합한 경유의 액적은 미세폭발 현상에 의해 기존 디젤 연료에 비해 더 빨리 증발되고 연소가 되었다. 또한, 순수 파라핀계 및 함산소계 연료의 화염은 전체 연소기간동안 기존 경유의 화염에 비해 푸른색을 띠고 있어, 매연이 없는 연소를 입증해 주었다.

  • PDF

The study of a fire fighting characteristic by a Single Evaporating Droplet in the case of a fire of military enclosure space (군사용 밀폐공간내의 화재시 단일 증발액적에 의한 방재특성 연구)

  • 이진호;방창훈;김정수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.207-217
    • /
    • 2000
  • A fire fighting characteristic by a single evaporating droplet in the case of a fire of military enclosure space was studied experimentally. Transient cooling of solid surface by water droplet evaporation has been investigated through controlled experiments using a heated brass cylinder. Quantitative predictions of droplet evaporation time and in-depth transient temperature distribution in solid have been made. The particular interest was in the removal of thermal energy from the heated cylinder by evaporative cooling. A $10{\mu}1$ single droplet is deposited on a horizontal brass surface with initial temperatures in the range of $90^{\circ}C{\sim}130^{\circ}C.$ The results can be summarized as follows; Evaporating droplet was divided into three different configuration. Evaporation time was predicted as a function of initial surface temperature ($t_c=492.62-6.89T_{s0}+0.0248T_{s0}^2).$ The contact temperature was predicted as a function of initial surface temperature( $T_{i}$=0.94 $T_{s0}$+1.4), The parameter ${\beta}_o$ was predicted as a function of initial surface temperature( ${\beta}_0$ : 0.O0312 $T_{s0}+0.932$)>)>)

  • PDF

Evaporation Cooling of Single Droplet on a Heated Solid Surface (가열된 고체표면에 부착된 단일 액적의 증발냉각)

  • Yu, Gap-Jong;Bang, Chang-Hun;Kim, Jeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.845-852
    • /
    • 2001
  • The characteristics of evaporation cooling of single droplet on a heated surface were studied experimentally. The two kinds of heater modules were tested to measure cooling characteristics of metal surface (high conductivity) and Teflon surface (low-energy surface, low conductivity). The results showed that time averaged heat flux during droplet evaporation increased exponentially with initial surface temperatures of brass, copper and steel. The heat flux and evaporation time did not varied with metal conductivities. However, the temperature drop after the deposition of droplet was larger on Teflon than on the metals. Thus, the correlation of interface temperature between liquid droplet and metal surface was proposed as a function of the initial surface temperature of heating materials, which could be applied to both metal and non-metal ones.

A Study of Evaporation and Ignition Characteristics of Single Fuel Droplet (단일액적의 증발 및 착화특성에 관한 연구)

  • 백병준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.551-559
    • /
    • 1998
  • Evaporation and ignition characteristics of fuel droplet have major influences on the efficiency and performance of engine. In the present study the experiment of evaporation and self-ignition of single fuel was performed under the various ambient conditions. An individually suspended droplet of n-heptane n-hexadecane ethyl-alcohol and light oil were employed as a liquid droplet. Evaporation and ignition characteristics were measured by using the video-camera and image processing technique under the various ambient temperatures (up to 1000310 OC)and partial pressure of oxigen(up to 60%) The evaporation curve shows that the droplet life time ignition delay time decreases as the ambient temperature and partial pressure of oxigen increase, The temperature variations of droplet were also reported for various fuel and ambient temperatures. The numerical simulations were carried out to predict droplet diameter and temperature with favorable agreement.

  • PDF

Evaporation Characteristics of a Butanol Gel-Fuel Droplet in Atmospheric Pressure Condition (상압에서 부탄올 젤 연료액적의 증발특성)

  • Nam, Siwook;Kim, Hyemin
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.73-80
    • /
    • 2021
  • Evaporation characteristics of single butanol gel fuel were investigated in different mass ratios of gellant and ambient temperatures. Gel fuel was made by adding the pure water and hydroxypropylmethyl cellulose (HPMC) into the 1-butanol. Increase of viscosity was observed when the loading of HPMC increased. The evaporation process of gel droplet could be divided into three stages: droplet heating, micro-explosion and crust formation. Elevation of ambient temperature helped boost the evaporation in all experimental cases, but the effect was mitigated when the mass ratio of HPMC increased. Increase of HPMC weight ratio reduced the evaporation rate.

Extinguishing Characteristics of Liquid Pool Eire by Water Mist Containing Sodium Salt (나트륨 염이 첨가된 미분무수의 액체 pool fire소화특성)

  • Park Jae-Man;Shin Chang-Sub
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.13-19
    • /
    • 2005
  • An experimental study is presented for extinguishing characteristics of liquid fuel fire by water mist containing sodium acetate trihydrate. To evaluate the extinguishing performance of water mist containing an additive, the evaporation characteristics of a water droplet on a heated surface was examined. The evaporation process was recorded by a charge-coupled-device camera. Also, small-scale extinguishing tests were conducted for n-heptane pool fire in ventilated space to measure flame temperature variation. The average evaporation rate of a water droplet containing an additive was lower than that of a pure water droplet at a given surface temperature due to the precipitation of salt in the liquid-film and change of surface tension. In case of using an additive, the flame temperature was lower than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing an additive was increased reducing flame size. And also dissociated metal atoms, sodium, were reacted as a scavenger of the major radical species OH^-,\;H^+$ which were generated for combustion process. Moreover, at a high pressure of 4MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

Effects of Surface Roughness on Evaporation Cooling of Single Water Droplet in Radiative Fields (복사장 내에서 충돌면의 표면조도가 단일액적 증발냉각에 미치는 영향)

  • 유갑종;박철우;장충선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.467-474
    • /
    • 2004
  • This paper presents the results of an experimental investigation for the effect of radiant heat on the evaporation cooling of water droplet in the process of fire extinguishing. The experiments are mainly focused on the surface temperature, the surface roughness and the droplet diameter. The range of surface temperature is T$_{s}$ =80-14$0^{\circ}C$, surface roughness is R$_{a}$=0.08-0.64 ${\mu}{\textrm}{m}$ and the droplet diameter is $\Phi$=3.0 mm in the radiation. The results show that the evaporation time is shorter for the larger surface roughness and the volume of droplet increased when the surface roughness is 0.64 ${\mu}{\textrm}{m}$ at the surface temperature 127$^{\circ}C$. When the surface roughness is 0.64 ${\mu}{\textrm}{m}$, the heat flux is larger than the surface roughness is 0.08 ${\mu}{\textrm}{m}$ at the surface temperature 81$^{\circ}C$.>.>.

Numerical Study for Ambient Turbulence Effects on a Single Droplet Vaporization (주변난류유동이 단일액적의 증발에 미치는 영향에 대한 수치적 연구)

  • ;Park, Jung Kyu
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2699-2709
    • /
    • 1995
  • This investigation reports on the study of the ambient turbulent effects on the droplet vaporization in the fuel spray combustion. For tractability, this discussion considers a single droplet in an infinite turbulent flow. In this numerical study, the low-Reynolds-number version of k-.epsilon. turbulence model was used to represent the turbulence effects. The set of two-dimensional conservation equations which describe the transport phenomena in turbulent flow using the mean flow quantities including the droplet internal laminar motion, are solved numerically with the finite difference procedure of Patankar(SIMPLER). The evaluation of the computational model is provided by two limiting cases: turbulent flow over the solid sphere and the laminar flow over a liquid drop. The results show that the turbulence effects are noticeable for the vaporization at high turbulence intensity (10-50%) which is encountered in a typical spray. The magnitude of turbulence effects mainly depends on the turbulent intensity. These effects are not sensitive to the Reynolds number in the range of 50 to 200, ambient temperature in the range of 700 to 1000.deg. K and the volatility.

An Experimental Study on Vaporization and Combustion Behavior for Single Droplets of Water-in-Oil Emulsified Fuels (유화연료 단일액적의 증발 및 연소거동에 관한 실험적 연구)

  • Kim, B.S.;Kim, D.I.;Oh, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.931-936
    • /
    • 2000
  • An experimental study has been carried out of the combustion behavior of single fuel droplets of water-in-light oil emulsions in an electric furnace to elucidate the dominant factor for the occurrence of micro-explosions. The tests were carried out by changing the following four parameters; the size of water droplets in the emulsified fuels having the same water content, the ratio of water to light oil, ambient temperature in electric furnace, and the kind of fuel having different viscosity(Kerosene, Olive Oil). The result shows that the each parameter plays the different role in the effect on behavior of vaporization, explosion, ignition and combustion for single droplets of water-in-oil Emulsified fuels.

  • PDF

An Experimental Study on Vaporization and Combustion Behavior for Single Droplets of Water-in-Oil Emulsified Fuels (유화연료 단일액적의 증발 및 연소거동에 관한 실험적 연구)

  • Park, M.C.;Kim, B.S.;Oh, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.81-89
    • /
    • 2000
  • An experimental study has been carried on single fuel droplets of water-in-light oil emulsions in an electric furnace to elucidate the dominant factor for the occurrence of micro-explosions. The tests were carried out by changing the following four parameters; the surfactant, the ratio of water to light oil, ambient temperature in electric furnace, and four kinds of fuels having different viscosity(light-oil, kerosene, iso-octane, bunker fuel). The result shows that micro-explosion phenomena is dominated without surfactant and below 30% of water content. Explosion-time is affected by ambient temperature and viscosity of used fuel.

  • PDF