• Title/Summary/Keyword: 단일 액적 연소

Search Result 27, Processing Time 0.025 seconds

A Study of Droplet Combustion Characteristics with Mulicomponent Fuel (다조성 연료 액적의 연소특성에 관한 연구)

  • 김봉석
    • Journal of Energy Engineering
    • /
    • v.10 no.2
    • /
    • pp.153-160
    • /
    • 2001
  • 본 연구에서는 고온 분위기 온도 및 대기압 하에서 액적의 급속가열과 연소가 가능한 고온 연소로 장치와 고속도 비디오 카메라를 이용하여 다조성 단일 액적 연소에 대해 고찰하였다. 그 결과 저비점 성분을 혼합한 경유의 액적은 기본적으로 입경의 2승 법칙에 의해서 감소되었으며, 그 과정에서 입경이 일시적으로 급속히 감소하는 현상이 보여짐과 더불어 연소기간도 단축되었다. 즉, 저비점 성분을 혼합한 경유의 액적은 미세폭발 현상에 의해 기존 디젤 연료에 비해 더 빨리 증발되고 연소가 되었다. 또한, 순수 파라핀계 및 함산소계 연료의 화염은 전체 연소기간동안 기존 경유의 화염에 비해 푸른색을 띠고 있어, 매연이 없는 연소를 입증해 주었다.

  • PDF

Combustion characteristics of water-in-oil emulsion droplets (물-경유 유화연료 액적의 연소특성에 관한 연구)

  • 정종수;신현동
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.34-40
    • /
    • 1989
  • 본 연구에서는 유화연료 액적의 연소시에 나타나는 일반적인 연소특성과 이에 미치는 압력의 영향에 대하여 실험적인 방법으로 연구를 수행하였다. 고압용기내에서 유화연료의 단일 액적을 연소시키면서 그 연소과정을 고속으로 촬영하여 분석하는 한편, 연소과정중의 액적 내부의 온도변화를 측정하였다. 고압 용기내의 압력은 대기압으로부터 10atm까지, 연료에 대한 물의 혼합비는 체적비로 0-20%까지 변화시키면서, 유화연료 액적의 연소특성에 미치는 물의 함량과 압력변화의 영향을 분석하였다.

  • PDF

Effect of droplet length on a burning constant rate of suspended droplet (액적간격이 고정액적의 연소율상수에 미치는 영향에 관한 연구)

  • Han, Jae-Seob;Kim, Seon-Jin;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • This paper presents the results of an experimental investigation on the combustion of single droplets and 1-D droplet arrays of jet A-1 fuel droplets in atmospheric pressure. Experimental results indicate that burning rate constants$({\kappa}_c)$ of jet A-1 fuel droplets were independent of initial droplet size as $0.915{mm}^2$/sec. It was acquired a general relationship expressing the variation of $d^2$ with time for droplet burning For 1-D droplet arrays $(l/d_o$=1.208{\sim}2.922)$/TEX>, the burning rate constant ${\kappa}_c$ decreased with decreasing droplet spacing $l/d_o$ and, The effect on combustion rate constant ${\kappa}_c$ was stronger to second fuel droplet than third fuel droplet with uniform droplet distance

Experimental Study on the Soot Formation Behavior of Octane Single Fuel Droplet Under the Constant Volume Combustion Conditions (정적 연소 조건에서 Octane 단일 연료 액적의 매연 생성 거동에 관한 연구)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.389-395
    • /
    • 2017
  • This study was performed to provide the information of the soot formation behavior of octane single fuel droplet under the identical combustion conditions. To achieve this, this experimental study provide the results of the soot formation characteristics of octane droplet in accordance with different initial droplet diameter($d_0$), at the same time, experiment was conducted under the same combustion conditions which are 1.0atm of ambient pressure($P_{amb}$), 21% of oxygen concentration($O_2$) and 79% of nitrogen concentration($N_2$). Visualization of octane droplet combustion was performed by visualization system with high speed camera. The results of maximum soot volume fraction($f_{vmax}$) was almost the same under the equivalent ambient conditions regardless of initial droplet diameter. Furthermore, maximum soot volume fraction was showed the higher value in the measuring direction between $135^{\circ}$ and $315^{\circ}$ since the soot-tail is generated during two opposing igniters movement process.

A Survey on the Droplet Generators and Principle of Droplet Generation (액적 발생기의 종류 및 액적 발생 원리에 대한 고찰)

  • Park, Bong-Yeop;Han, Jae-Seob;Kim, Seon-Jin;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.54-60
    • /
    • 2000
  • Most droplet generators are based on the Rayleigh's theory of droplet breakup, and various kind of droplet generation devices have been designed in accordance with vibrating method of capillary liquid column. At present, VOAG(Vibrating Orifice Monodisperse Aerosol Generator) is used to generate primary aerosol standards. For the combustion experiments with isolated single droplet, it is found that dripping method or separating method of suspended drop at an end of filament are more effective. Single drops can be separated from continuous streams of droplets by controlling electric charge.

  • PDF

An Experimental Study on the Combustion Behavior of Single Coal-Water Slurry Droplet (석탄-물 혼합물 단일액적의 연소 특성에 관한 실험적 연구)

  • 채재우;조용철;전영남;한영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2159-2168
    • /
    • 1992
  • Coal-water slurry is considered to have the potential for displacing petroleum used in the existing oil-fired industrial and utility boilers. The combustion of coal-water slurry(CWS) is a complex process and little is known about the detailed mechanism. In this paper the combustion behavior of a single suspended droplet of CWS in hot gas stream was investigated. The effect of coal particle size, water content in droplet, initial droplet size, ambient temperature and oxygen fraction in ambient gas were studied. The results are as follows; (1) Increasing the oxygen fraction in ambient gas considerably reduced the char combustion time. (2) The variation of water content and coal particle size in droplet showed little effect on the combustion behavior. (3) In the relatively high temperature ambient gas, the water evaporation time became shorter and the combustion process was stable.

Combustion of ethyl alcohol and kerosene fuel droplets in atmospheric pressure (대기압하에서의 에틸알코올과 케로신 연료액적의 연소에 관한 연구)

  • Han, jae-seob;Kim, seon-jin;Park, bong-yeop;Kim, yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.71-78
    • /
    • 2001
  • This paper presents the results of an experimental investigation on the combustion of single droplets arrays of Ethyl alcohol and kerosene fuel droplets in atmospheric pressure. The initial droplet diameters, d$_{0}$, were nominally 1.3~1.8mm, and inter-droplet separation distance l(l/do=1.31~2.60). experimental results indicate that burning rate constants(K) of ethyl alcohol and kerosene droplets were independent of initial droplet size as 0.0083, 0.0095 $\textrm{cm}^2$/sec. For 1-D droplet array's kerosene fuel droplet, burning rate constants(K) decreases with decreasing normalized inter-droplet distance. Normalized inter-droplet distance has stronger effect on 2nd fuel droplet than 3rd fuel droplet. When normalized inter-droplet distance is larger than 2.60, the effect of droplet spacing on droplet life is very small.

  • PDF

Study on the Combustion Characteristics of Methanol Fuel Droplet (Methanol 연료 액적의 연소 특성에 관한 연구)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet burning, extinction process and flame behavior of methanol fuel and improve the ability of theoretical prediction of these phenomena. For the improved understanding of these phenomena, this paper presents the experimental results on the methanol droplet combustion conducted under various initial droplet diameters ($d_0$), ambient pressure ($P_{amb}$), and oxygen concentration ($O_2$) conditions. To achieve this, the experimental study was conducted in terms of burning rate (K) with normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

Characteristics of ignition and micro-explosion for droplets of water-in-fuel emulsion (유화액적 연료의 점화와 미소폭발의 특성)

  • Jeung, Incheol;Lee, Kyung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • The water-in-fuel droplets were applied to investigate the effect of mixing ratio between water and decane, ambient temperature, droplet size and spacing between droplets on ignition and micro-explosion in a heated chamber with high temperature. The ignition temperature of droplet was found lower as the droplet size was increased and the contents of water was decreased. The life time of droplet, however, decreases as the contents of water increases due to the micro-explosion. The occurrence of micro-explosion also increases as the size of droplets and the ambient temperature increase. The flame spread speed gets faster as the contents of water and the number of suspender decreases.