• Title/Summary/Keyword: 단일 모자형

Search Result 13, Processing Time 0.022 seconds

Collapse Characteristics of CFRP hat Shaped Structural Member with Various Orientation Angle for a Use of Lightweight (경량화용 CFRP 모자형 구조부재의 적층각도 변화에 따른 압궤특성)

  • Hwang, Woochae;Yang, Yongjun;Yang, Inyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.865-870
    • /
    • 2012
  • CFRP of the advanced composite materials as structure materials for vehicles has a widely application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness compared with conventional materials. This study is to investigate the energy absorption characteristics and collapse mode of CFRP single and double hat shaped structural member under the axial static collapse test. The CFRP single and double hat shaped structural members stacked at different angles (${\pm}15^{\circ}$, ${\pm}45^{\circ}$, ${\pm}90^{\circ}$, $90^{\circ}/0^{\circ}$ and $0^{\circ}/90^{\circ}$ where the direction on $0^{\circ}$ coincides with the axis of the member). The axial static collapse tests were carried out for each member. Collapse mode and energy absorption characteristics of the each member were analyzed.

Elastic Buckling Analysis of Single Hat Rectangular Tubes (단일 모자형 사각 단면 부재의 탄성좌굴해석)

  • 김윤영;한창운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1251-1258
    • /
    • 1995
  • An elastic buckling analysis of single hat rectangular tubes is carried out. Based on Bleich's buckling theory for elastically restrained plates, a method to estimate the compliance of the supporting plates for the buckling plate and to compensate the effects of compression force acting on the supporting plates is offered. Necessary assumptions which enable an analytic approach to be used are also given. The present results are compared with the finite element results obtained from ABAQUS.

A construction method for IP-based Fixed and Personalized A/V Mosaic EPG service (IP 기반 고정형 및 맞춤형 동영상 모자익 EPG 서비스 구축방법)

  • Song, Chee-Yang;Choi, Lark-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.39-52
    • /
    • 2006
  • As accelerates the technical evolution of high-speed network and progresses the digitalization of broadcasting network, TV channel service through satellite/cable/terrestrial networks becomes more stable and mature. However, TV channel service using IP network such as IPTV is recently emerging. Especially, when it comes to current mosaic EPG(Electronic Program Guide) as a channel guide, the implementation of EPG via IP network is under developing. Furthermore, the personal target mosaic EPG is not provided at all in the IPTV. This paper proposes a construction method of mosaic system which can support fixed and personalized mosaic EPG using IP network for viewers. The fixed mosaic EPG is made several steps as follows ; First, H/E generates several mosaic A/V streams. Then, which are transmitted to the STB in terms of multicasting via IP network. Finally, mosaic EPG is displayed on TV through STB. In addition, this paper describes a construction model of the personalized A/V mosaic EPG that represents each person's favorite channels according to their tastes and interests. As for the contributions. The TV channel guide using IP network enable viewer to select channel more easily with practical adaptation of multi-channel expansibility and sufficient usability. In addition, through personal mosaic EPG, a number of viewers can compose their own mosaic EPG and enjoy a variety of channel easily in accordance with their preferences. Finally, the personal mosaic EPG can prohibit non-adult users from connecting adult-only contents more efficiently.

  • PDF

A Study on the Collapse Characteristics of Hat-Shaped Members with Spot Welding under Axial Compression(I) (모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(I))

  • 차천석;김정호;양인영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.192-199
    • /
    • 2000
  • The spot-welded automotive side member which has a hat-shaped section and a double hat shaped section has been tested on the axial static(10mm/min) and quasi-static(50mm/min) compressing load. The collapse characteristics of automotive sections have been reviews on shift on shape and in width of the spot-voiding on the flange. On the basis of the results of tests and reviews, the optimum energy absorption capacity of the structure has been studied.

  • PDF

A Study on the Collapse Characteristics of Hat-shaped Members with Spot Welding under Axial Compression(II) (모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(II))

  • 차천석;양인영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.195-201
    • /
    • 2000
  • The fundamental spot welded sections of automobiles (hat-shaped and double hat-shaped sections) absorb most of the energy in a front impact collision. The sections of various thickness, shape and weld width on the flange lave been tested on axial impact crush load (Mass 40kg, Velocity 7.19m/sec) using a vertical air pressure crash est device Characteristics of impact collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

  • PDF

The Static Collapse Characteristics of CFRP Single and Double Hat Shaped Section Members according to the Interface Number for Lightweight (경량화용 CFRP 단일 모자형 부재와 CFRP 이중 모자형 부재의 계면수 변화에 따른 정적압궤특성)

  • Hwang, Woo-Chae;Cha, Cheon-Seok;Yang, In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.20-25
    • /
    • 2012
  • Currently, the most important purpose in designing automobile is environment-friendly and safety performance aspect. CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structure materials for vehicles, has a wide application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness. In this study, experimental investigations are carried out for CFRP single and double hat shaped section member in order to study the effect of various stacking condition. They were cured by heating to the appropriate curing temperature($130^{\circ}C$) by means of a heater at the vacuum bag of the autoclave. The stacking conditions were selected to investigate the effect of the interface numbers. The CFRP single and double hat shaped section members which manufactured from unidirectional prepreg sheets were made of 8ply. The static collapse tests performed and the collapse mode and energy absorption capability were analyzed according to interface number.

Axial Impact Collapse Analysis on Hat-shaped Members by FEM (FEM에 의한 단일모자형 단면부재의 축방향 충격압궤 해석)

  • Cha, Cheon-Seok;Gang, Jong-Yeop;Yang, In-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.129-136
    • /
    • 2000
  • In the frontal collision the spot welded hat-shaped section side member is the fundamental structure for automobiles and has a great amount of absorbing capacity. For this reason LS-DYNA3D has been used for analyzing impact collapse characteristics on hat shaped section member with respect to the valuables; thickness, width ratio and spot weld potch on impact load(7.19m/sec, 1034J). By comparing the results from simulation and the experimental results, the utilization of simulation has been certified.

  • PDF

Collapse Characteristics on Width Ratio and Flange Spot-Weld Pitch for Hat-Shaped Members (모자형 단면부재의 폭비와 플랜지 용접간격에 따른 압궤특성)

  • Cha, Cheon-Seok;Gang, Jong-Yeop;Kim, Yeong-Nam;Kim, Jeong-Ho;Kim, Seon-Gyu;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.98-105
    • /
    • 2001
  • The fundamental and widely used spot welded sections of automobiles (hat and double hat-shaped section members) absorb most of the energy in a front-end collision. The sections were tested on axial static(10mm/min) and quasi-static(1000mm/min) loads. Based on these test results, specimens with various thickness, shape and spot weld pitch on the flange have been tested with impact velocity(7.19m/sec) the same as a real life car clash. Characteristics of collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

A Study on Crushing Characteristic of Hatted Section Tube (모자형 단면부재의 압괴특성 연구)

  • 김천욱;한병기;김병삼
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.212-219
    • /
    • 2002
  • In the frontal collision of cars, front parts of cars such as engine rail and side members that are composed of hatted section tubes should absorb most of the collision energy far the passenger compartment not to be deformed. For these reasons the study on the collapse characteristics, maximum crushing load and energy absorption capacity of hatted section tubes are needed. In this study, top hatted section tubes and double hatted section tubes are investigated. The maximum crushing load of hatted section tubes is induced from plastic buckling stress of plates by considering that the hatted section tubes are composed of plates with each different boundary conditions and that its material has a strain hardening effect. On this concept maximum crushing load equations of hatted section tubes are derived and verified by experiments. from the results of experiment, the differences of collapse characteristics between top hatted section tube and double hatted section tube are analysed. And mean crushing loads of hatted section tubes from experiments are compared with other theory.

Energy Absorption Characteristics for Spot Welded Hat-shaped Section Members at Various Velocities (속도변화에 따른 점용접된 모자형단면부재의 에너지흡수 특성)

  • Ki, Sim-Jae;Cha, Cheon-Seok;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.114-120
    • /
    • 2006
  • Front-end side members of vehicles are structures with the greatest energy absorbing capability in a front-end collision of vehicles. This paper was undertaken to analyze the energy absorption characteristics of spot welded hat and double hat-shaped section members under the axial collapse. The experiments were performed with respect to the various collapse velocities. It was expected that para-closed sections would show collapse characteristics which be quite different from those of perfectly closed sections. The collapse velocities were selected as follows: the velocities in the hat-shaped section members were 0.00017m/sec, 0.017m/sec, 4.7m/sec, 6.5m/sec, 6.8m/sec, 7.2m/sec, and 7.3m/sec those in the double hat-shaped section members were 0.00017m/sec, 0.017m/sec, 6.5m/sec, 6.8m/sec, 7.2m/sec 7.3m/sec, and 7.9m/sec. In the program system presented in this study, an explicit finite element code, LS-DYNA3D, is adopted for simulating complicated collapse behavior of the hat and double hat-shaped section members under the same condition of the collapse test. The validity of simulation was confirmed by the comparison between the simulation result and the collapse experiment.