• Title/Summary/Keyword: 단일벽탄소나노튜브

Search Result 117, Processing Time 0.028 seconds

수평배향 SWNTs의 직경제어 합성에 관한 연구

  • Kim, Jin-Ju;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.457-457
    • /
    • 2011
  • 단일벽 탄소나노튜브(SWNTs)는 직경 및 키랄(chiral)특성에 따라 반도체성 튜브와 금속성 튜브로 구분되며, 작은 직경의 SWNTs는 큰 직경의 튜브에 비하여 일반적으로 기계적 특성이 뛰어나다고 알려져 있다. 따라서, 합성하는 단계에서 SWNTs의 직경 및 chiral 특성의 제어가 가능 하게 된다면 전자소자로의 응용을 한층 앞당길 수 있을 것으로 예상하고 있다. 이와 더불어 SWNTs의 수평배향성장은 SWNTs의 집적(integration)을 용이하게 할 수 있기 때문에 향후 나노전자소자 개발을 목표로 최근 많은 연구결과들이 보고되고 있다. 하지만 현재는 SWNTs가 고밀도로 합성되기 때문에, 우수한 개별 (individual) SWNT의 전기적 특성보다는 집단적(ensemble) 특성을 얻고 있다. 따라서, 합성기판 위에서 개별적인 SWNT를 낮은 밀도로 수평배향 성장하는 일은 향후 나노튜브기반의 고성능 전자소자 개발에 중요한 과제이다. 나아가, 수평배향 성장 된 개별 SWNT의 직경 및 키랄 특성까지 함께 제어할 수 있다면 곧바로 응용에 적용할 수 있는 획기적인 기술이 될 것이다. 본 연구에서는, SWNTs의 수평배향도 및 직경을 제어하여 성장시키는 것을 목표로 하였다. 합성기판은 퀄츠를 이용하였고, 합성촉매로는 나노입자의 밀도를 비교적 쉽게 제어할 수 있고, 균일한 크기를 갖는 페리틴 단백질을 이용하였다. 단분산(monodispersion) 된 촉매 나노입자를 얻기 위해서 스핀코팅 조건과 페리틴 용액농도를 조절하여 퀄츠기판 위에 분산시킨 후, 아르곤 분위기 하에 열처리를 통하여 촉매 나노입자의 크기 감소를 유도하였다. 그 결과 열처리 시간이 증가함에 따라 촉매 나노입자의 크기가 감소하는 것을 알 수 있었고, SWNTs의 직경 또한 감소하는 것을 확인하였다. 또한 퀄츠기판 위에 직경제어 합성 된 수평배향 SWNTs를 다른 기판으로 전사하는 기술을 확립함으로써, 향후 SWNTs기반의 소자 제작기술의 바탕을 마련하였다.

  • PDF

Length and Diameter Separation of Single Walled Carbon Nanotubes (탄소 나노튜브의 길이와 지름에 따른 분류 및 절단 메커니즘에 대한 연구)

  • Baik S.;Oh Y.S;Hong S.H.;Lee D.J;Chang Y.S.;Kim Y.J.;Choi J.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1159-1163
    • /
    • 2005
  • The Sonication method is widely used with surfactants to suspend individual single walled nanotubes in solution, and it is well known that sonication-induced tube cutting occurs. Recently, it is found out that ultrasonicated nanotubes yield simultaneous separation by tube length and diameter. Nanotubes that have been cut shortest possess the greatest enrichments of large-diameter species. In this study, we cut single walled carbon nanotubes using a ball milling method and find out similar behavior compared to the sonication process Cutting mechanisms are also investigated using continuum approaches.

  • PDF

Investigation of Temperature Dependence for CNT Semiconductor in External Magnetic Field (외부 자기장내의 반도체 CNT의 온도의존 조사)

  • Park, Jung-Il;Lee, Haeng-Ki
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.73-78
    • /
    • 2012
  • We calculated the electron spin resonance (ESR) line-profile function. The line-width of single-walled carbon nanotube (SWNT) was studied as a function of the temperature at a frequency of 9.5 GHz in the presence of external electromagnetic radiation. The temperature dependence of the line-widths is obtained with the projection operator method (POM) proposed by Argyres and Sigel. The scattering is little affected in the low-temperature region (T < 200 K). We conclude that the calculation process presented in this method is useful for optical transitions in SWNT.

Effect of surface treatments on Single-walled Carbon nanotubes(SWNTs) for Hydrogen storage (수소저장용 단일벽 탄소나노튜브의 표면처리 효과)

  • Lee, Young-Seak;Cho, Se-Ho;Park, Il-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.343-349
    • /
    • 2005
  • In this study, We had surface-treated single-walled carbon nanotubes (SWNTs) for improving hydrogen storage capacity. The SWNTs were treated by heat treatment, acid treatment and fluorinated at various temperatures. The SWNTs were characterized by Raman spectroscopy and TEM and estimated hydrogen storage capacities at 303K. As shown Raman spectra and TEM images, the structure of fluorinated SWNTs were stable at 423K but changed to the MWNTs-like structure or onion structure over 523K. Hydrogen storage capacity of SWNTs fluorinated at 423K was remarkably increased 2.6 times than that of pristine SWNTs. For SWNTs fluorinated at 573K, the amount of hydrogen adsorbed wasn't increased compared with SWNTs fluorinated at 423K. Therefore, high hydrogen storage capacity of SWNTs could be archived by fluorinated condition at 423K, which was not changed SWNT structure.

Remedial Junction of Proton Irradiated Single Walled Carbon Nanotubes using Heat Treatment For Solar Energy Harvesting (태양에너지 획득 양성자 조사 단일벽 탄소나노튜브의 열처리에 의한 교정결합)

  • Kim, Tae Gyu;Park, Young Min;Kim, Young Bae;Kim, Dae Weon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The remedial junction is found in the network of single walled carbon nanotubes after the irradiation of protons not only for the better mechanical strength but also for the higher property of electrical conductivity. The irradiated proton formed a beam transferred sufficient energy to change the sp2 structure of atomic carbon as much as damage of crystalline formation, however it is shown the cross bonding while recovery of structure. This improved network in 2-D atomic chain of carbon is expected to use in a critical part in space energy harvesting system related with the solar radiation.

A Study on Biomaterial Detection Using Single-Walled Carbon Nanotube Based on Interdigital Capacitors (인터디지털 커패시트 기반의 단일벽 탄소 나노 튜브를 이용한 바이오 물질 검출에 관한 연구)

  • Lee, Hee-Jo;Lee, Hyun-Seok;Yoo, Kyung-Hwa;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.891-898
    • /
    • 2008
  • In this paper, we have studied on the possibilities of the biomaterial detection using single-walled carbon nanotube (SWNT) based on interdigital capacitors. For the four different configurations, such as interdigital capacitor, SWNT in the $5\;{\mu}m$ gap interdigital capacitor, biotinlated SWNT, and biotin and sreptavidin immobilization cases, the resonant frequency has been measured as 10.02 GHz, 11.02 GHz, 10.82 GHz, and 10.22 GHz, respectively. Assuming that the resonant frequency reflects the capacitance changes due to binding of two-different permittivity biomaterials, we have suggested an equivalent circuit model based on measured results, confirming the capacitance changes. For biotinlated SWNT and biotin-streptavidin immobilization cases, the capacitances are $C_b=0.55\;pF$ and $C_s=0.95\;pF$. In this work, we experimentally demonstrated that the specific biomaterial binding causes the capacitance change and therefore this gives rise to resonant frequency. In conclusion, we confirmed the sufficient possibility as CNT biosensor because an analyte biomaterial(streptavidin) binding arouses a considerable resonant frequency change.

SWCNT/Nafion Composite Development for Improvement of Mechanical Properties of IPMC (IPMC의 기계적 특성향상을 위한 SWCNT/Nafion 복합체 개발)

  • Kwon, Hui-June;Lee, Heon-Sang;Lee, Jung-Hwa;Jun, Chan-Bong;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • From recent research, it has revealed that Electroacitve polymer(EAP) has a physical limitation. Carbon nanotube(CNT) is known as the promising material which has excellent electro-mechanical characteristics and is mostly defect-free. It is expected that a successful synthesis of CNT and Nafion known as a primary material for IPMC would make a great improvement on its electro-mechanic feature. In this paper, we suggest the method of synthesis of CNT with Nafion which improves electro-mechanical characteristic. Using mechanical dispersion with Nafion and Isopropyl Alcohol(IPA), we disperse Single-walled carbon nanotubes(SWCNT). For a uniformly layer of CNT, we used a spray gun on a hot plate by a simplified method. In the result, we fabricated a disperse SWCNT/Nafion composite uniformly.

Electrical Property of Immobilized SWNTs Bundle as Bridge between Electrodes in Nanobiosensor Depending on Solvent Characteristics (시료용액의 특성에 따른 고정화된 단일벽 탄소나노튜브의 전기적 거동)

  • Lee, Jinyoung;Cho, Jaehoon;Park, Chulhwan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.115-120
    • /
    • 2017
  • In recent, it is worldwide issued that nanoscale science and technology as a solution have supported to increase the sensing performance in carbon nanotube based biosensor system. Containing material chemistry in various nanostructures has formed their high potentials for stabilizing and activating biocatalyst as a bioreceptor for medical, food contaminants, and environmental detections using electrode modification technologies. Especially, the large surface area provides the attachment of biocatalysts increasing the biocatalyst loading. Therefore, nano-scale engineering of the biocatalysts have been suggested to be the next stage advancement of biosensors. Here, we would like to study the electrical mechanism depending on the exposure methods (soaking or dropping) to the sample solution to the assembled carbon nanotubes (CNTs) on the gold electrodes of biosensor for a simple and highly sensitive detection. We performed various experiments using polar and non-polar solutions as sampling tests and identified electrical response of assembled CNTs in those solutions.

Effects of Pd Nanoparticles on Single-Walled Carbon Nanotubes as High-Sensitivity Hydrogen Gas Sensors (덴드리머와 팔라듐 나노입자를 이용한 단일벽 탄소나노튜브 고성능수소센서)

  • Lee, Jun Min;Ju, Seonghwa;Joe, Jin Hyoun;Kim, Sung-Jin;Lee, Wooyoung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.342-346
    • /
    • 2010
  • Pd nanoparticles (NPs) were successfully functionalizedon the surfaces of single-walled carbon nanotubes (SWNTs) by dendrimer-mediated synthesis. The hydrogen sensing properties of the Pd NPs functionalized SWNTs were investigated. Pd NPs-dendrimer-SWNTs sensors show much better speedsand superior recovery rates but lower sensitivity compared to Pd NPs-functionalized SWNTs directly fabricated due to the existence of dendrimers. Pyrolysis of the dendrimers by heat treatment resulted in a fast response time and high sensitivity owing to the reduced length of the dendrimers. These results demonstrate that the heat treatment of dendrimers in Pd NPs-dendrimer-SWNTs sensors can enable significant electrical conductance modulation upon exposure to extremely low concentrations (10 ppm) of hydrogen gas ($H_2$) in air.

Effect of the top coating surface tension and thermal expansion matching on the electrical properties of single-walled carbon nanotube network films (표면장력과 열팽창계수 불일치가 단일벽 탄소나노튜브 필름의 전도성에 미치는 영향 연구)

  • Kim, Jun-Suk;Han, Joong-Tark;Jeong, Hae-Deuk;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.42-42
    • /
    • 2010
  • We have characterized the previously undescribed parameters for engineering the electrical properties of single-walled carbon nanotube (SWCNT) films for technological applications. The surface tension of the top coating passivation material and matching coefficients of thermal expansion for the substrate and carbon nanotube network are two crucial parameters for the fabrication of reliable and highly conductive single-walled carbon nanotube network thin films.

  • PDF