• Title/Summary/Keyword: 단일모드

Search Result 770, Processing Time 0.029 seconds

Measurement of Distributed Temperature and Strain Using Raman OTDR with a Fiber Line Including Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서가 있는 광섬유 라인에 라만 OTDR을 이용한 분포 온도 및 변형률 측정 가능성에 대한 연구)

  • Kwon, Il-Bum;Byeon, Jong-Hyun;Jeon, Min-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.443-450
    • /
    • 2016
  • In this study, we propose a novel fiber optic sensor to show the measurement feasibility of distributed temperature and strains in a single sensing fiber line. Distributed temperature can be measured using optical time domain reflectometry (OTDR) with a Raman anti-Stokes light in the sensing fiber line. Moreover, the strain can be measured by fiber Bragg gratings (FBGs) in the same sensing fiber line. The anti-Stokes Raman back-scattering lights from both ends of the sensing fiber, which consists of a 4 km single mode optical fiber, are acquired and inserted into a newly formulated equation to calculate the temperature. Furthermore, the center wavelengths from the FBGs in the sensing fiber are detected by an optical spectrum analyzer; these are converted to strain values. The initial wavelengths of the FBGs are selected to avoid a cross-talk with the wavelength of the Raman pulsed pump light. Wavelength shifts from a tension test were found to be 0.1 nm, 0.17 nm, 0.29 nm, and 0.00 nm, with corresponding strain values of $85.76{\mu}{\epsilon}$, $145.55{\mu}{\epsilon}$, $247.86{\mu}{\epsilon}$, and $0.00{\mu}{\epsilon}$, respectively. In addition, a 50 m portion of the sensing fiber from $30^{\circ}C$ to $70^{\circ}C$ at $10^{\circ}C$ intervals was used to measure the distributed temperature. In all tests, the temperature measurement accuracy of the proposed sensor was less than $0.50^{\circ}C$.

Nondestructive Diagnosis of NPP Piping System Using Ultrasonic Wave Imaging Technique Based on a Pulsed Laser Scanning System (펄스 레이저 스캐닝 기반 초음파 영상화 기술을 활용한 원전 배관 비파괴 진단)

  • Kim, Hyun-Uk;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • A noncontact nondestructive testing (NDT) method is proposed to detect the damage of pipeline structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND: YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using three dimensional Fourier transformation (3DFT). The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a pipeline structures is conducted using the damage-sensitive features. Finally, the pipes with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

Fabrication of passive-aligned optical sub-assembly for optical transceiver using silicon optical bench (실리콘 광학벤치를 사용한 수동정렬형 광송수신기용 광부모듈의 제작)

  • Lee, Sang-Hwan;Joo, Gwan-Chong;Hwang, nam;moon, Jong-Tae;Song, Min-Kyu;Pyun, Kwang-Eui;Lee, Yong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.510-515
    • /
    • 1997
  • Packaging takes an extremely important element of optical module cost due primarily to the added complication of alignment between semiconductor devices and optical fiber, and many efforts have been devoted on reducing the cost by eliminating the complicated optical alignment procedures in passive manner. In this study, we fabricated silicon optical benches on which the optical alignments are accomplished passively. To improve the positioning accuracy of a flip-chip bonded LD, we adopted fiducial marks and solder dams which are self-aligned with V-groove etch patterns, and a stand-off to control the height and to improve the heat dissipation of LD. Optical sub-assemblies exhibited an average efficiency of -11.75$\pm$1.75 dB(1$\sigma$) from the LD-to-single mode fiber coupling and an average sensitivity of -35.0$\pm$1.5 dBm from the fiber and photodetector coupling.

  • PDF

Broadband W-band Tandem coupler using MIMIC technology (MIMIC 기술을 이용한 광대역 W-band Tandem 커플러)

  • Lee, Mun-Kyo;An, Dan;Lee, Bok-Hyung;Lim, Byeong-Ok;Lee, Sang-Jin;Moon, Sung-Woon;Jun, Byoung-Chul;Kim, Yong-Hoh;Yoon, Jin-Seob;Kim, Sam-Dong;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.105-111
    • /
    • 2007
  • In this paper, we designed and fabricated a 3-dB tandem coupler using air-bridge technology for millimeter-wane monolithic integrated circuits, operating at W-band($75{\sim}110\;GHz$) frequency. Tightly edge-coupled CPW line has low directivity due to different even-mode and odd-mode phase velocity. To overcome this disadvantage, a 3-dB tandem coupler which comprises the two-sectional weakly parallel-coupled lines with equal phase velocity was designed at W-band. The proposed coupler was fabricated using air-bridge technology to monolithically materialize the uniplanar coupler structure instead of conventional multilayer or wire bonded structure. From the measurements, the coupling coefficient of $2.9{\sim}3.6\;dB$ and the good phase difference of $91.2{\pm}2.9^{\circ}$ were obtained in broad frequency range of $75{\sim}100\;GHz$.

The Study of Modified Sequencing Batch Reactor Process for Small Advanced Wastewater Treatment (소규모 고도하수처리를 위한 변형 연속회분식공정에 관한 연구)

  • Han, Woonwoo;Kim, Kyuhyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • This study was carried out to estimate the performance of modified sequencing batch reactor (SBR) process by the application of SBR process for small advanced wastewater treatment plant. Organic, nitrogen and phosphorus were able to remove in the unit reactor by SBR process and it would be able to select the suitable operation method. The plant was operated to achieve high performance with influent control, optimum anoxic/oxic condition using intermediate aeration method, and solid (sludge) /liquid (effluent) separation by modified decanter. The optimum operating mode was 3Cycles a day and intermediate input and aeration. Under these conditions, the treatment efficiencies were good with 60% of designed flow rate and low influent quality. When the influent concentrations of BOD and CODMn were 120.4 mg/L and 95.7 mg/L, respectively. The effluent concentrations of BOD and CODMn were 6.8 mg/L and 11.0 mg/L, respectively. The average removal efficiencies of BOD and CODMn were 94.4% and 88.5%, respectively. The removal efficiencies of T-N and T-P were 69.6% and 73.6%, respectively when the average T-N and T-P concentrations were 32.2mg/L and 4.65mg/L, respectively. The T-N and T-P removal efficiencies were slightly decreased to 58.8% and 68.5%, respectively in the winter season but its were also stable efficiencies. BOD, T-N and T-P were removed by 90%. 67% and 46% respectively in the first anoxic/oxic condition, in addition to T-P was removed by 70% in the second anoxic/oxic condition. From the results, modified sequencing batch reactor (SBR) process is suitable for small advanced wastewater treatment.

  • PDF

Measurement System of Dynamic Liquid Motion using a Laser Doppler Vibrometer and Galvanometer Scanner (액체거동의 비접촉 다점측정을 위한 레이저진동계와 갈바노미터스캐너 계측시스템)

  • Kim, Junhee;Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.227-234
    • /
    • 2018
  • Researches regarding measurement and control of the dynamic behavior of liquid such as sloshing have been actively on undertaken in various engineering fields. Liquid vibration is being measured in the study of tuned liquid dampers(TLDs), which attenuates wind motion of buildings even in building structures. To overcome the limitations of existing wave height measurement sensors, a method of measuring liquid vibration in a TLD using a laser Doppler vibrometer(LDV) and galvanometer scanner is proposed in this paper: the principle of measuring speed and displacement is discussed; a system of multi-point measurement with a single point of LDV according to the operating principles of the galvanometer scanner is established. 4-point liquid vibration on the TLD is measured, and the time domain data of each point is compared with the conventional video sensing data. It was confirmed that the waveform is transformed into the traveling wave and the standing wave. In addition, the data with measurement delay are cross-correlated to perform singular value decomposition. The natural frequencies and mode shapes are compared using theoretical and video sensing results.

Temporal Change of Grain Size of the Beach Sediments in the Sinjado, Nakdong River Estuary (낙동강 하구 신자도 해빈 퇴적물 입도의 시간적인 변화)

  • Kim, B.O.;Lee, S.R.;Khim, B.K.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.4
    • /
    • pp.304-312
    • /
    • 2011
  • Grain size analysis was conducted for a total of 402 surface sediments collected from 67 sites along three (upper, middle, and lower) transects corresponding to the high-, mid-, and low-intertidal zone of beach on the Sinjado, Nakdong River estuary in Nov. 2005 and May 2006. Sinja-do beach sediments showed uni-modal grain size distributions, in which the mode of $3.0{\phi}$ was dominant in 2005 whereas the mode of $2.5{\phi}$ in 2006. This coarsening trend was more remarkable in the western side of beach as well as in the mid- and low-intertidal zone. In this study, we focused on investigating characteristics of sediment size changes on the basis of transect data that differ in tidal elevation. For this purpose, a statistical test was applied for transect by transect comparison of grain size parameters such as mean, sorting, and skewness. Mean values between middle and lower transect, sorting values between upper and lower transect, and skewness values over the beach reflected statistically significant temporal changes. Also, mean and skewness parameters showed an inverse relationship which was more stronger in 2006 than in 2005. Temporal changes in Sinja-do beach sediments resulted in decrease of mean and sorting values but increase of skewness values, intensifying the inverse relationship between mean and skewness parameters.

Measurement of two-dimensional vibration and calibration using the low-cost machine vision camera (저가의 머신 비전 카메라를 이용한 2차원 진동의 측정 및 교정)

  • Kim, Seo Woo;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.99-109
    • /
    • 2018
  • The precision of the vibration-sensors, contact or non-contact types, is usually satisfactory for the practical measurement applications, but a sensor is confined to the measurement of a point or a direction. Although the precision and frequency span of the low-cost camera are inferior to these sensors, it has the merits in the cost and in the capability of simultaneous measurement of a large vibrating area. Furthermore, a camera can measure multi-degrees-of-freedom of a vibrating object simultaneously. In this study, the calibration method and the dynamic characteristics of the low-cost machine vision camera as a sensor are studied with a demonstrating example of the two-dimensional vibration of a cantilever beam. The planar image of the camera shot reveals two rectilinear and one rotational motion. The rectilinear vibration motion of a single point is first measured using a camera and the camera is experimentally calibrated by calculating error referencing the LDV (Laser Doppler Vibrometer) measurement. Then, by measuring the motion of multiple points at once, the rotational vibration motion and the whole vibration motion of the cantilever beam are measured. The whole vibration motion of the cantilever beam is analyzed both in time and frequency domain.

A Crypto-processor Supporting Multiple Block Cipher Algorithms (다중 블록 암호 알고리듬을 지원하는 암호 프로세서)

  • Cho, Wook-Lae;Kim, Ki-Bbeum;Bae, Gi-Chur;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2093-2099
    • /
    • 2016
  • This paper describes a design of crypto-processor that supports multiple block cipher algorithms of PRESENT, ARIA, and AES. The crypto-processor integrates three cores that are PRmo (PRESENT with mode of operation), AR_AS (ARIA_AES), and AES-16b. The PRmo core implementing 64-bit block cipher PRESENT supports key length 80-bit and 128-bit, and four modes of operation including ECB, CBC, OFB, and CTR. The AR_AS core supporting key length 128-bit and 256-bit integrates two 128-bit block ciphers ARIA and AES into a single data-path by utilizing resource sharing technique. The AES-16b core supporting key length 128-bit implements AES with a reduced data-path of 16-bit for minimizing hardware. Each crypto-core contains its own on-the-fly key scheduler, and consecutive blocks of plaintext/ciphertext can be processed without reloading key. The crypto-processor was verified by FPGA implementation. The crypto-processor implemented with a $0.18{\mu}m$ CMOS cell library occupies 54,500 gate equivalents (GEs), and it can operate with 55 MHz clock frequency.

Target Reliability Index of Single Gravel Compaction Piles for Limit State Design (한계상태설계를 위한 단일 쇄석다짐말뚝의 목표신뢰도지수)

  • You, Youngkwon;Lim, Heuidae;Park, Joonmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.5-15
    • /
    • 2014
  • Target reliability index in the limit state design indicated the safety margin and it is important to determine the partial factor. To determine the target reliability index which is needed in the limit state design, the six design and construction case histories of gravel compaction piles (GCP) were investigated. The limit state functions were defined by bulging failure for the major failure mode of GCP. The reliability analysis were performed using the first order reliability method (FORM) and the reliability index was calculated for each ultimate bearing capacity formulation. The reliability index of GCP tended to be penportional to the safety factor of allowable stress design and average value was ${\beta}$=2.30. Reliability level that was assessed by reliability analysis and target reliability index for existing structure foundations were compared and analyzed. As a result, The GCP was required a relatively low level of safety compared with deep and shallow foundations and the currd t reliability level were similar to the target reliability in the reinforced earth retaining-wall and soil-nailing. Therefore the target reliability index of GCP suggested as ${\beta}_T$=2.33 by various literatures together with the computed reliability level in this study.