• Title/Summary/Keyword: 단위 신경망

Search Result 218, Processing Time 0.024 seconds

A Study on the Input Pattern of Neural Network for Prosody Control in a Korean Sentence (문장 단위 운율 제어를 위한 신경망의 입력 패턴에 관한 연구)

  • 민경중
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.105-109
    • /
    • 1998
  • 법칙 합성 시스템은 합성 단위, 합성기, 합성방식 등 여러 가지 다양한 시스템이 있으나 순수한 법칙 합성 시스템이 아니고 기본 합성 단위를 연결하여 합성음을 발생시키는 연결 합성 시스템은 연결 단위사이 그리고 문장 단위에서의 매끄러운 합성 계수의 변화를 구현하지 못해 자연감이 떨어지는 실정이다. 자연감에 영향을 끼치는 주요 원인중의 하나가 운율 법칙의 부정확한 구현이므로 자연음으로부터 추출한 운율에 관한 법칙을 알고리듬화하는 대신 신경망으로 하여금 이 운율 법칙을 학습하도록 하여 좀더 자연음의 운율에 근접한 운율을 발생시키고자 하였다. 신경망으로 운율을 발생시키기 위해 먼저 운율에 영향을 주는 요소들을 정해 신경망 입력 패턴을 선정해야 한다. 먼저 분절요인에 의한 영햐응ㄹ 고려해주기 위해 전후 3음소를 동시에 입력시키고 문장내에서의 구문론적인 영향을 고려해주기 위해 해당 음소의 문장내에서의 위치, 운율구에 관한 정보등을 신경망의 입력 패턴으로 구성하였다.

  • PDF

A Simulation Study of Phosphoric Acid Fuel Cell Process Using Back-propagation Neural Network (오류역전파 신경망을 이용한 인산형 연료전지 공정의 전산모사)

  • 이원재;김성준;설용건;이태희
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.17-22
    • /
    • 1994
  • 오류역전파 신경망을 인산형 연료전지의 조업변수인 산소 및 수소 유량, 작동온도에 대하여 학습시켜 연료전지 모델을 구성하였다. 또한 구성된 모델을 이용하여 다양한 조업조건에서의 단위전지 성능을 예측하여 이를 실험결과와 비교하였으며, 학습된 신경망을 ASPEN PLUS의 단위공정으로 도입하여 50kW 출력의 연료전지 공정을 구성한 후 조업변수에 대한 영향을 살펴보았다. 3개의 층으로 구성된 오류역전파 신경망은 학습단계상수와 모멘텀이 각각 0.7 및 0.9인 경우 단위전지 성능곡선을 가장 정확히 학습하였으며, 이에 의하여 구성된 신경망 모델은 수소 및 산소의 유량, 온도의 변화에 따른 단위전지 성능곡선의 변화를 정확히 예측하였다. 연료전지 전체공정의 모사에서는 개질기의 경우 $600^{\circ}C$의 상압에서 수증기/탄화수소 비율이 2.6일 때, 연료전지의 경우 작동온도가 190~20$0^{\circ}C$일 때 연료전지의 출력이 최대값을 나타내었으며, 단위전지의 전기화학적 효율은 약 45%, 수소이용률은 약 61%, 발전시스템 전체의 효율은 18%이었다.

  • PDF

Machine Printed Character Recognition Based on the Combination of Recognition Units Using Multiple Neural Networks (다중 신경망을 이용한 인식단위 결합 기반의 인쇄체 문자인식)

  • Lim, Kil-Taek;Kim, Ho-Yon;Nam, Yun-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.777-784
    • /
    • 2003
  • In this Paper. we propose a recognition method of machine printed characters based on the combination of recognition units using multiple neural networks. In our recognition method, the input character is classified into one of 7 character types among which the first 6 types are for Hangul character and the last type is for non-Hangul characters. Hangul characters are recognized by several MLP (multilayer perceptron) neural networks through two stages. In the first stage, we divide Hangul character image into two or three recognition units (HRU : Hangul recognition unit) according to the combination fashion of graphemes. Each recognition unit composed of one or two graphemes is recognized by an MLP neural network with an input feature vector of pixel direction angles. In the second stage, the recognition aspect features of the HRU MLP recognizers in the first stage are extracted and forwarded to a subsequent MLP by which final recognition result is obtained. For the recognition of non-Hangul characters, a single MLP is employed. The recognition experiments had been performed on the character image database collected from 50,000 real letter envelope images. The experimental results have demonstrated the superiority of the proposed method.

신경망 VLSI 기술의 발달과 현재

  • 한일송
    • Information and Communications Magazine
    • /
    • v.9 no.11
    • /
    • pp.47-52
    • /
    • 1992
  • 신경망 실용화에 기본이 되는 신경망 VLSI 기술의 최근 발전 추세에 관하여 검토하였다. 대규모 고속 신경망 VLSI 구현 방법들인 디지털, 아날로그, 하이브리드 신경망 칩들을 비교하였으며, 십 수만 단위의 하이브리드 신경망 칩기술을 제시하였다.

  • PDF

A Study on the Prosody Generation of Korean Sentences (한국어 문장 단위운율 발생에 관한 연구)

  • 민경중
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.419-423
    • /
    • 1998
  • 법칙합성 시스템은 합성단위 합성기, 합성방식 등에 따라 여러 가지 다양한 음성합성시스템이 있으나 순수한 법칙합성 시스템이 아니고 기본 합성단위를 연결하여 합성음을 발생시키는 연결합성 시스템은 연결단위사이 그리고 문장단위에서의 매끄러운 합성계수의 변화를 구현하지 못해 자연감이 떨어지는 실정이다. 자연감을 높이기 위해 보다 자연음에 가까운 운율을 발생시키기 위해 먼저 운율에 영향을 주는 요소들을 고려하여 신경망 입력 패턴을 구성한다. 분절요인에 의한 영향을 고려해주기 위해 전후 3음소를 동시에 입력시키고 문장내에서의 구문론적인 영향을 고려해주기 위해 해당 음소의 문장내에서의 위치, 운율구에 관한 정보등을 신경망의 입력 패턴으로 구성하였다. 신경망을 훈련시키기 위한 언어자료로는 고립단어군과 음소균형 문장군 그리고 삽입음절연결어 등으로 구성한다. 특정화자로 하여금 신경망을 훈련시켜 자연음의 운율과 유사한 합성운을 발생시켰다.

  • PDF

Korean Isolated Word Recognition Using Modular Structured Neural Network (모듈구조 신경망을 이용한 한국어 단어 인식에 관한 연구)

  • 최환진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.11-14
    • /
    • 1991
  • 음소단위로 구성된 음소군들 각각에 대해 구성된 신경 회로망을 하나로 통합하는 모듈구조로 신경망을 이용하여 일반적인 예약 시스템에서 사용할 수 있는 어휘인 시간명, 월명, 지역명등 총 34 단어에 대한 인식 실험내용을 기술한다. 구문회로망(context net)를 이용하는 경우에 약 91.2%의 인식율을, 단순히 음소단위를 기반으로하여 인식할 경우에 약 72%의 인식율을 얻으므로써, 음소 단위 인식시스템의 경우에 보다 높은 인식율을 얻기 위해서는 상위 level의 처리가 수반되어야 함을 확인할 수 있었다.

  • PDF

A Method of Scaling Time-Delay Neural Networks for Korean Allophone Recognition (한국어 변이음 인식을 위한 시간지연 신경망의 확장방법)

  • 김수일
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.229-234
    • /
    • 1994
  • 본 논문에서는 한국어 변이음을 인식하기 위한 시간지연 신경망의 확장 방법을 살펴보고 한국어 파열음의 벼이음을 인식하는 실험을 통해 각 확장 방법의 인식 성능을 비교한다. 먼저 변이음을 연속음성인식의 인식단위로 사용하기 위하여 한 음소이모든 변이음을 고려하면서 서로 유사한 변이음을 통합 분류하여 3개의 변이음 군으로 나눈다. 한국어 파열음에 대한 인식 실험결과, 음향 음성학적인 특성에 따라 나누어진 trbah 시간지연 신경망들을 모듈 별로 학습한 후, 계층적으로 통합하여 전체적인 시간지연 신경망을 구성하는 방법이 가장 좋은 성능을 나타내었다. 또한, 변이음 단위 인식이 음소 단위 인식에서 문제가 되는 조음 결합 현상을 해결할 수 있음을 확인하였고, 변이음 인식의 결과인 변이음 열이 제공하는 부가적인 정보를 음운파상에 이용하는 방법에 대해 고찰하였다.

  • PDF

Application of Artificial Neural Network to the Estimation of Mass Conversion Rate in Weathered Granite Soils (화강암 풍화토의 토량 변화율 추정을 위한 인공신경망 적용)

  • 김영수;정성관;임안식;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.2
    • /
    • pp.73-83
    • /
    • 2001
  • 본 연구에서는 전국 4개 지구의 화강암 풍화토를 연구대상으로 현장 및 실내시험을 수행하고 토량 변화율을 노상과 노체에 대하여 결정하였다. 그리고, 본 연구에서는 인공 신경망 중 오류 역전파 학습 알고리즘을 도입하여 토량 변화율 C 값을 추정하고 신경망의 적용성에 대한 검증을 수행하였다. 화강암 풍화토에 대한 실내 및 현장시험 결과에서 얻어진 토량 변화율 C 값은 노상과 노체 구분 없이 최소 0.7에서 최대 1.2정도의 넓은 범위로 나타났다. 토지공사에서 제안하는 C값의 산정식과 본 연구 결과를 비교한 결과, 토지공사의 산정식에 의한 결과가 과대 평가될 가능성이 큰 것으로 나타났다. 비중, 자연 함수비, 자연상태의 습윤단위중량, #200 통과율 그리고 균등계수의 입력변수를 갖는 $I_{5-1}$$H_{30-30}$$O_1$의 신경망에서 다른 신경망 구조들보다 잦은 지역 최소점에 수렴하는 결과를 보였다. 본 연구에서 사용한 모든 신경망 구조에서 시험결과와 신경망 결과의 상관계수는 0.9이상으로 나타나 높은 상관성을 나타내었다. 특히, 인공 신경망에 의한 예측결과는 다양한 영향인자들 중에서 비중, 자연 함수비, 자연상태의 습윤단위중량 그리고 #200 통과율의 4개 변수만으로도 C값을 예측할 수 있었으며, 상관계수는 0.96으로 나타났다.다.

  • PDF

Operating Guidelines for a Multi-reservoir System using a Neural Network Model (신경망 모형을 활용한 댐 군 연계 운영 기준)

  • Na, Mi-Suk;Kim, Jae-Hee;Kim, Sheung-Kown
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1447-1451
    • /
    • 2008
  • 저수지 군 연계 운영을 위한 각 댐에서의 방류량을 결정하기 위해서는 대개 각 댐의 초기 저수량, 유역 상 하류 댐의 총 저수량, 수요량, 기간별 발전 목표 달성 정도, 그리고 예상되는 미래유입량 등이 추정되어야 한다. 본 연구에서는 댐 군 연계운영을 위한 일별 최적화 모형인 CoMOM(Coordinated Multi-reservoir Operating Model, 4.2)의 상위 단계의 더 큰 단위 기간에 활용될 댐 군 연계 운영 기본 가이드라인을 신경망 기법을 활용하여 도출할 수 있을 지를 실험해 보고자 한다. 이 방법은 기본적으로 CoMOM이 제시하는 일별 운영 계획의 결과가 최선의 정책일것이라는 가정에 근거하고 있다. 즉, 주어진 상황에서 일별 CoMOM이 제시하는 결과를 교사 신호로 하여 신경망 학습을 수행하고, 이 결과를 통해 규칙(Rule)을 생성하는 과정으로 요약할 수 있다. 신경망 분석은 CoMOM이 이수기 모형인 점을 고려하여 이수기만을 대상으로 실험하였으며, 단위 분석기간을 10일로 택하여 미래 10일간의 방류량을 결정하는 것을 목표로 하였다. 신경망 모형의 입력요소로는 각 댐의 초기 유효 저수량, 유역 상 하류 댐의 총 저수량, 10일간의 수요량, 그리고 향후 한달 동안의 예상 유입량을 적용하였고, 출력요소로는 CoMOM에서 제시한 방류량 결과를 사용하였다. 모형의 유효성을 검증하기 위해 한강수계의 이수기를 대상으로 과거의 유입량 자료가 재현된다고 가정하고, 모의운영을 통하여 적합성을 분석하였다. 이를 위해 매일 단위의 실제 댐 군 연계 운영의 상황을 모의할 수 있는 실시간 시뮬레이션을 적용하였으며, 신경망 모형의 운영 기준에 의해 결정된 향후 10일 동안의 총 방류량이 해당기간 동안 동일한 양으로 나누어 방류된다는 가정 하에 모의 운영하였다. 그리고 도출된 운영 결과는 최종적으로 실적과의 평균저수량, 발전량, 여수로 방류량 비교를 통해 평가하였다.

  • PDF

A Study on the Prosody Generation of Korean Sentences using Neural Networks (신경망을 이용한 한국어 운율 발생에 관한 연구)

  • Lee Il-Goo;Min Kyoung-Joong;Kang Chan-Koo;Lim Un-Cheon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.65-69
    • /
    • 1999
  • 합성단위, 합성기, 합성방식 등에 따라 여러 가지 다양한 음성합성시스템이 있으나 순수한 법칙합성 시스템이 아니고 기본 합성단위를 연결하여 합성음을 발생시키는 연결합성 시스템은 연결단위사이의 매끄러운 합성계수의 변화를 구현하지 못해 자연감이 떨어지는 실정이다. 자연음에 존재하는 운율법칙을 정확히 구현하면 합성음의 자연감을 높일 수 있으나 존재하는 모든 운율법칙을 추출하기 위해서는 방대한 분량의 언어자료 구축이 필요하다. 일반 의미 문장으로부터 운율법칙을 추출하는 것이 바람직하겠으나, 모든 운율 현상이 포함된 언어자료는 그 문장 수가 극히 방대하여 처리하기 힘들기 때문에 가능하면 문장 수를 줄이면서 다양한 운율 현상을 포함하는 문장 군을 구축하는 것이 중요하다. 본 논문에서는 음성학적으로 균형 잡힌 고립단어 412 단어를 기반으로 의미문장들을 만들었다. 이들 단어를 각 그룹으로 구분하여 각 그룹에서 추출한 단어들을 조합시켜 의미 문장을 만들도록 하였다. 의미 문장을 만들기 위해 단어 목록에 없는 단어를 첨가하였다. 단어의 문장 내에서의 상대위치에 따른 운율 변화를 살펴보기위해 각 문장의 변형을 만들어 언어자료에 포함시켰다. 자연감을 높이기 위해 구축된 언어자료를 바탕으로 음성데이타베이스를 작성하여 운율분석을 통해 신경망을 훈련시키기 위한 목표패턴을 작성하였다 문장의 음소열을 입력으로 하고 특정음소의 운율정보를 발생시키는 신경망을 구성하여 언어자료를 기반으로 작성한 목표패턴을 이용해 신경망을 훈련시켰다. 신경망의 입력패턴은 문장의 음소열 중 11개 음소열로 구성된다. 이 중 가운데 음소의 운율정보가 출력으로 나타난다. 분절요인에 의한 영향을 고려해주기 위해 전후 5음소를 동시에 입력시키고 문장내에서의 구문론적인 영향을 고려해주기 위해 해당 음소의 문장내에서의 위치, 운율구에 관한 정보등을 신경망의 입력 패턴으로 구성하였다. 특정화자로 하여금 언어자료를 발성하게 한 음성시료의 운율정보를 추출하여 신경망을 훈련시킨 결과 자연음의 운율과 유사한 합성음의 운율을 발생시켰다.

  • PDF