• Title/Summary/Keyword: 단열 두께

Search Result 174, Processing Time 0.021 seconds

Analysis of growth environment of Flammulina velutipes using the smart farm cultivation technology (병재배 팽이버섯의 스마트팜 재배를 통한 생육환경 분석)

  • Lee, Kwan-Woo;Jeon, Jong-Ock;Lee, Kyoung-Jun;Kim, Young-Ho;Lee, Chan-Jung;Jang, Myoung-Jun
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2019
  • In this study, smart farm technology was used by farmers cultivating 'CHIKUMASSHU T-011' in order to develop an optimal growth model for the precision cultivation of bottle-grown winter mushroom and the results of the same are mentioned herein. Farmers participating in the experiment used 60 ㎡ of bed area with 4 rows and 13 columns of shelf shape, 20 horsepower refrigerator, 100T of sandwich panel for insulation, 6 ultrasonic humidifiers, 12 kW of heating, and 20,000 bottles of Flammulina velutipes mushroom spores. The temperature, humidity, and carbon dioxide concentrations, which directly affect the growth of the mushroom, were collected and analyzed from the environmental sensors installed at the winter mushroom cultivation area. The initial temperature was found to be 14.5℃, which was maintained at 14℃ to 15℃ until the 10th day. In the restriction phase, the initial temperature was 4℃ and was maintained between 2℃ and 3℃ until the 15th day, while during the growth phase, it was maintained between 7.5℃ to 9.5℃. Analysis of the humidity data revealed initial humidity to be 100%, which varied between 88% to 98% during primordia formation period. The humidity remained between 77% to 96% until the 15th day, in the restriction phase and between 75% to 83% during the growth phase. The initial carbon dioxide concentration was 3,500 ppm and varied between 3,500 ppm to 6,000 ppm during primordia formation period and was maintained at 6,000 ppm until the 15th day. During the growth phase, the carbon dioxide concentration was found to be over 6,000 ppm. Fruiting body characteristics of 'CHIKUMASSHU T-011' cultivated in the farmhouse were as follows: Pileus diameter of 7.5 mm and thickness of 4.1 mm, stipe thickness of 3.3 mm, and length of 154.2 mm. The number of valid fruiting bodies was 1,048 unit per 1,400 mL bottle, and the individual weight was 0.71 g per unit. The yield of fruiting bodies was 402.8 g per 1,400 mL bottle.

Static and dynamic elastic properties of the Iksan Jurassic Granite, Korea (익산 쥬라기 화강암의 정 및 동탄성학적 특성)

  • Kang, Dong-Hyo;Jung, Tae-Jong;Lee, Jung-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.99-112
    • /
    • 2000
  • The Iksan Jurassic Granite shows relatively less fractures and homogeneous rock fabrics, and is one of the most popular stone materials for architectures and sculptures. Almost mutually perpendicular rift, grain, and halfway in the Iksan Jurassic Granite are well known to quarrymen based on its splitting directions, and therefore it should exhibit orthorhombic symmetry. Theoretically, there are 9 independent elastic stiffness coefficients $(C_{1111},\;C_{2222},\;C_{3333},\;C_{2323},\;C_{1313},\;C_{1212},\;C_{1122},\;C_{2233},\;and\;C_{1133})$ for orthorhombic anisotropy. In order to characterize the static and dynamic elastic properties of the Iksan Jurassic Granite, triaxial strains under uniaxial compressive stresses and ultrasonic velocities of elastic waves in three different polarizations are measured. Both experiments are carried out with six directional core samples from massive rock body. Using the results of experiments and the densities measured independently, the static and dynamic elastic coefficients are computed by simple mathematical manipulation derived from the governing equations for general anisotropic media. The static elastic coefficients increase ar uniaxial compressive stress rises. Among those, the static elastic coefficients at uniaxial compressive stress of a 24.5 MPa appear to be similar to the dynamic elastic coefficients under ambient condition. Although some deviations are observed, the preferred orientations of microcracks appear to be parallel or subparallel to the rift, the grain, and the hardway from microscopic observation of thin sections. This indicates that the preferred orientations of microcracks cause the elastic anisotropy of the Iksan Jurassic Granite. The results are to be applied to the effective use of the Iksan Jurassic Granite as stone materials, and can be used for the non-destructive safety test.

  • PDF

Applied Technologies and Effects for the Carbon Zero Office Building (업무용 탄소제로건물의 적용기술 및 효과)

  • Lee, Jae-Bum;Hong, Sung-Chul;Beak, Name-Choon;Choi, Jin-Young;Hong, You-Deog;Lee, Suk-Jo;Lee, Dong-won
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.283-295
    • /
    • 2011
  • Many actions against climate change have been taken to reduce greenhouse gases (GHGs) emissions at home and abroad. As of 2007, the GHGs emitted from buildings accounted for about 23 % of Korea's total GHGs emission, which is the second largest GHG reduction potential following industry. In this study, we introduced Carbon Zero Building (CZB), which was constructed by the National Institute of Environmental Research to cut down GHGs from buildings in Korea, and evaluated the main applied technologies, the amount of energy load and reduced energy, and economic values for CZB to provide data that could be a basis in the future construction of this kind of carbon-neutral buildings. A total of 66 technologies were applied for this building in order to achieve carbon zero emissions. Applied technologies include 30 energy consumption reduction technologies, 18 energy efficiency technologies, and 5 eco-friendly technologies. Out of total annual energy load ($123.8kWh/m^2$), about 40% of energy load ($49kWh/m^2$) was reduced by using passive technologies such as super insulation and use of high efficiency equipments and the other 60% ($74.8kWh/m^2$) was reduced by using active technologies such as solar voltaic, solar thermal, and geothermal energy. The construction cost of CZB was 1.4 times higher than ordinary buildings. However, if active technologies are excluded, the construction cost is similar to that of ordinary buildings. It was estimated that we could save annually about 102 million won directly from energy saving and about 2.2 million won indirectly from additional saving by the reduction in GHGs and atmospheric pollutants. In terms of carbon, we could reduce 100 ton of $CO_2$ emissions per year. In our Life Cycle Cost (LCC) analysis, the Break Even Point (BEP) for the additional construction cost was estimated to be around 20.6 years.

Analysis of growth environment by smart farm cultivation of oyster mushroom 'Chunchu No 2' (병재배 느타리버섯 '춘추 2호'의 스마트팜 재배를 통한 생육환경 분석)

  • Lee, Chan-Jung;Park, Hye-Sung;Lee, Eun-Ji;Kong, Won-Sik;Yu, Byeong-Kee
    • Journal of Mushroom
    • /
    • v.17 no.3
    • /
    • pp.119-125
    • /
    • 2019
  • This study aims to report the results for the analysis of the growth environment by applying smart farm technology to "Chunchu No 2" farmers in order to develop an optimal growth model for precision cultivation of bottle-grown oyster mushrooms. The temperature, humidity, carbon dioxide concentration, and illumination data were collected and analyzed using an environmental sensor installed to obtain growth environment data from the oyster mushroom cultivator. Analysis of the collected temperature data revealed that the temperature at the time of granulation was $19.5^{\circ}C$ after scraping, and the mushroom was generated and maintained at about $21^{\circ}C$ until the bottle was flipped. When the fruiting body grew and approached harvest time, mushrooms were harvested while maintaining the temperature between $14^{\circ}C$ and $18^{\circ}C$. The humidity was maintained at almost 100% during the complete growth stage. Carbon dioxide concentration gradually increased until 3 days after the beginning of cultivation, and then increased rapidly to almost 5,500 ppm. From the 6th day, carbon dioxide concentration was gradually decreased through ventilation and was maintained at 1,600 ppm during harvest. Light intensity of 8 lux was irradiated up to day 6 after seeding, and growth was then continued while periodically irradiating 4 lux light. The fruiting body characteristics of "Chunchu No 2" cultivated in the farmhouse were as follows: pileus diameter of 26.5 mm and thickness of 4.9 mm, stipe thickness of 8.9 mm, and length of 68.7 mm. The fruiting body yield was 166.8 g/850 ml, and the individual weight was 12.8 g/10 units.