• Title/Summary/Keyword: 단열온도 상승실험

Search Result 53, Processing Time 0.024 seconds

An Experimental Study on the Construction Performances and Economical Evaluation of the Self-compacting Concrete by Cementitious Materials (결합재에 따른 자기충전 콘크리트의 시공성 및 경제성 평가에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.315-322
    • /
    • 2017
  • The purpose of this study is to investigate experimentally the construction performances and economical evaluation of the self-compacting concrete in actual site work after selecting the optimum mix proportions according to cementitious materials. Slag cement type of 46.5% slag powder and belite cement of 51.4% $C_2S$ content, lime stone powder as binders are selected for site experiment including water cement ratio. Also, test items for optimum mix proportion are as followings ; (1) Slump flow, 500 mm reaching time, V-type flowing time and U-box height (2) Setting time, bleeding, shortening depth and adiabatic temperature rising (3) Mixing time in plant (4) Concrete quantity and cost, quality control in actual concrete work. As test results, (4) Optimum water-cement ratio ; Slag cement type 41.0% and belite cement 51.0% (2) Setting time and bleeding finishing time of slag cement are faster, bleeding content of slag cement is higher, shortening depth and adiabatic temperature rising of belite cement type are lower (3) Optimum mixing time in batcher plant is 75 seconds and concrete productive capacity is about $100{\sim}110m^3/hr$. (4) Belite cement type is lower than slag cement type in material cost 14.0%, and concrete quantity in actual concreting work save 3.3% in case of belite cement type. Therefore, self-compacting concrete of belite cement type is definitely superior to that of slag cement type in various test items without compressive strength development.

A Study on the Effects of Variables in Temperature Distribution of Mass Concrete (매스 콘크리트의 온도분포에 영향을 주는 주요 변수에 관한 연구)

  • 정철헌;강석화;정한중;박칠림;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.203-212
    • /
    • 1994
  • The setting and hardening of concrete is accompanied by nonlinear temperature distribution caused by developing heat of cement hydration. This leads to tensile stresses that may exceed the strength of the young concrete, and cracks occur. In this present study, the heat of hydration characteristics are obtained from a study in which insulated concrete cubes were tested. Based on test results, concrete heat of hydration characteristics according to unit weight cement and flyash replacement quantity are determined, then employed in a numerical temperature analysis that consider both environmental interaction and concreting phases. The numerical results are performed by ADINA - T. The analytical results are in good agreement with experimental data.

Hydration heat and autogenous shrinkage properties of silica-fume included mass concrete (실리카퓸을 사용한 매스콘크리트의 수화열과 자기수축 특성)

  • Kim, Chin-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.489-492
    • /
    • 2008
  • Adiabatic temperature rise and autogenous shrinkage experiments were performed for three silica-fume included mass concrete mixtures and a reference mixture without silica-fume, in order to investigate the influence of silica-fume on the hydration heat and autogenous shrinkage properties of mass concrete, and to examine applicability of silica-fume to mass concrete. It was revealed from the experiment that, for mass concrete, the rate of hydration was hardly increased while the maximum adiabatic temperature rise decreased about 5$^{\circ}$C by the addition of silica-fume, and the amount of autogenous shrinkage was almost the same regardless of silica-fume replacement. These facts imply that silica-fume can enhance the resistance of mass concrete to temperature cracking as well as the durability.

  • PDF

An Experimental Study on the Thermal Characteristics of Ice Storage Tank - Focusing on the Adiabatic Effects of Ice Storage Tank - (직접접촉식 빙축열조의 전열특성에 관한 연구 - 빙축열조의 단열영향을 중심으로 -)

  • Lee, Chae-Moon;Park, Jung-Won;Cho, Nam-Chul;Park, Sang-Rok;Kim, Il-Gyoum;Kim, Dong-Chun;Kim, Young-Ki;Yim, Chang-Soon
    • Solar Energy
    • /
    • v.17 no.2
    • /
    • pp.75-89
    • /
    • 1997
  • In this paper, the operating thermal characterictics of liquid-ice was expeimentally investigated in an adiabatic and a non-adiabatic direct contact liquid-ice heat exchanger. Experiments were carried out varing inlet temperature, Ice Packing Factor, and the flow rate of heat transfer fluid. The higher inlet temperature and the more much inlet flow rate, thermal stratification in liquid-ice heat exchanger was established faster. In the case of adiabatic ice storage tank, temperature distribution was a little higher at all conditions than that of non-adiabatic one. The ratio of latent energy to total discharge energy($E_{\lambda}/E_[tot}$) was about 80%, and the discharge of latent heat energy was appeared rapidly as inlet temperature and flow rate were higher.

  • PDF

Fundamental Properties of Fly ash Concrete Containing Lightly Burnt MgO Powder (저온 소성한 MgO 분말을 함유한 플라이애시 콘크리트의 기본 물성)

  • Choi, Seul-Woo;Jang, Bong-Seok;Lee, Kwang-Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.475-481
    • /
    • 2013
  • Although the lightly burnt MgO at $850{\sim}1000^{\circ}C$ has expansibility, it does not lead to unsound concrete. The expansion of MgO could compensate for shrinkage of concrete for a long-term, because the hydration of MgO occurs at a slow pace. Recently, the study and application of mineral admixture such as fly ash and blast furnace slag have increased for the hydration heat reduction, durability improvement, and reducing $CO_2$ emission in the construction industry. Thus, it is necessary to research on the concrete that contains both a mineral admixture and MgO as an expansion agent. This study investigates fundamental properties of fly ash concrete with lightly burnt MgO through various experiments. The adiabatic temperature test results showed that the fly ash concrete with MgO of the 5% replacement ratio had the slower pace of the temperature rise and the lower final temperature than the fly ash concrete. The influences of MgO on long-term compressive strength varied depending on water-binder ratio, and the long-term length change test results indicated the expansion effects of the FA concrete containing MgO.

Hydration Heat Properties of High Flowing Self-Compacting Concrete with Normal Strength (보통강도 고유동 자기충전 콘크리트의 수화발열 특성)

  • Choi, Yun-Wang;Kim, Byoung-Kwon;Lee, Jae-Nam;Ryu, Deug-Hyun;Song, Yong-Kyu;Jung, Woo-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.497-500
    • /
    • 2008
  • This research carries out experiments for hydration exothermic rate and adiabatic temperature rise of concrete to examine the characteristics of the hydration heat of high flowing self-compacting concrete with a normal strength. As a result of the hydration exothermic rate experiment, the high flowing self-compacting concrete that used Lime stone powder and fly ash as polymers shows that its hydration heat amount reduces due to the reduction of unit cement. The result measured the adiabatic temperature rise of concrete presents that high flowing self-compacting concrete having lots of binder contents has a good performance in temperature reduction due to the effect of polymer and that triple adding high flowing self-compacting concrete has a similar temperature rise speed with conventional concrete. As a result of the research, high flowing self-compacting concrete shows a better temperature reduction performance for the binder content per unit than conventional concrete. In addition, it is judged that triple adding high flowing self-compacting concrete with a specified concrete strength 30 MPa is more beneficial in temperature reduction and early hydration heat than double adding high flowing self-compacting concrete.

  • PDF

A Comparative Study on Strength Development, Chloride Diffusivity and Adiabatic Temperature Rise of Marine Concrete Depending on Binder Type (결합재 종류에 따른 해양 콘크리트의 강도 발현, 염화물 확산 및 단열온도 상승 특성에 대한 비교 연구)

  • Bae, Jun-Young;Cho, Sung-Hyun;Shin, Kyung-Joon;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.411-418
    • /
    • 2013
  • Recently, in order to reduce a damage of chloride attack and hydration heat in marine concrete structures, blended cement in mixing the marine concrete is widely used. Long term strength development is distinct in concrete with blended cement and it also has excellent resistance to chloride attack and reduction of hydration heat. However, blended cement has a characteristic of relatively low compressive strength in early age of 28 days. On the other hand, a high level of compressive strength is required in the Standard Specification for marine concrete mix design. Such concrete mix design satisfying Standard Specification is effective to chloride attack but disadvantageous for hydration heat reduction due to large quantity of binder. In this study, the material properties of marine concrete considering water-binder ratio and binder type are experimentally investigated. Through the research results, compressive strength in blended cement at the age of 56 days is similar although it has smaller compressive strength at the age of 28 days compared with result of OPC (ordinary portland cement). Even though blended cement has a large water-binder ratio and small unit of binder content, chloride ion diffusion coefficient is still small and hydration heat is also found to be reduced. For meeting the required compressive strength in Standard Specification for marine concrete at 28 days, the increased unit content of binder is needed but the increased hydration heat is also expected.

A Study on the Natural Convection from the Isothermal Square Beam Attached to an Adiabatic Plate (단열판에 부착된 등온 사각비임에서의 자연대류 열전달에 관한 연구)

  • Park, Jae-Lim;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • Steady laminar natural convection heat transfer from the isothermal square beam attached to an adiabatic plate has been studied for various inclination angles of the adiabatic plate and Rayleigh number by using Mach-Zehnder interferometer in air. As the inclination angles change, the different temperature and fluid flow field were obtained by the ascending heated fluid and the adiabatic plate. In this study, the inclination angles were $0^{\circ}$(positive & negative), $45^{\circ}$(positive & negative), and $90^{\circ}$. The maximum total mean Nusselt number value was found at a positive inclination angle ${\theta}=45^{\circ}$.

  • PDF

Mathematical Modeling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.118-125
    • /
    • 2002
  • Hydration is the main reason for the growth of the material properties. An exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development of all material properties and the formation of microstructure should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of W/C ratio on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The tatter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration. In this study, the effects of chemical composition of cement, W/C ratio, temperature, and moisture conditions on the degree of hydration are considered. Parameters that can be used to indicate or approximate the real degree of hydration are liberated heat of hydration, amount of chemically bound water, and chemical shrinkage, etc. Thus, the degree of heat liberation and adiabatic temperature rise could be determined by prediction of degree of hydration.

Mix Design and Physical Properties of Concrete Used in Yeoju-Bo Mass Concrete ("한강살리기" 4공구 여주보 매스콘크리트의 배합설계 및 역학적 특성)

  • Ha, J.D.;Park, K.W.;Shin, D.S.;Lee, C.K.;Kim, B.L.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.189-190
    • /
    • 2010
  • Yeoju-Bo is a large massive concrete structures that require the reduction of working period of construction. In this study, we optimized the mix proportion of internal/external concrete and physical properties like compressive strength, semi adiabatic temperature rise in laboratory. And we also performed thermal analysis to verify the thermal cracking. Lastly we measured the hydration heat and the thermal cracking in site to verify the safety of massive concrete structure.

  • PDF