• Title/Summary/Keyword: 단열암반

Search Result 105, Processing Time 0.023 seconds

Heat Conduction in Rock Mass Around Underground Cold Storage Cavern and Estimation of Heat Loads (지하냉동저장공동 주위암반의 열전도 특성 및 열부하 평가)

  • Synn, Joong-Ho;Park, Chan;Park, Yeon-Jun;Kim, Ho-Yeong
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1999.03a
    • /
    • pp.59-64
    • /
    • 1999
  • 지하암반은 계절적 대기온도 변화의 영향을 거의 받지 않는 온도조건 및 뛰어난 단열성으로 인해 물류의 저온냉동저장이나 액화연료의 저장 등을 위한 좋은 대상으로 인식되고 있다. 이러한 분야에 있어서 암반의 열물성 및 열유동 특성은 매우 중요한 요소로서, 이는 장기적인 에너지절약 및 지하구조물의 열역학적 안정성의 정확한 평가와 직접적 연관이 된다. (중략)

  • PDF

Identification of Conductive Fractures in Crystalline Recks (유동성 단열 파악을 위한 암반 내 단열특성 규명)

  • 채병곤;최영섭;이대하;김원영;이승구;김중렬
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.88-100
    • /
    • 1998
  • Since fractures may serve as major conduits of groundwater flow in crystalline rocks, characterization of conductive fractures is especially important for interpretation of flow system. In this study, characterization of fractures to investigate hydraulically conductive fractures in gneisses at an abandoned mine area was performed. The orientation, width, length, movement sense, infilling materials, spacing, aperture, roughness of both joints and faults and intersection and connectivity to other joints were measured on outcrops. In addition, characteristics of subsurface fractures were examined by core logging in five boreholes, of which the orientations were acquired by acoustic televiewer logging from three boreholes. The dominant fracture sets were grouped from outcrops; GSet 1: N50-82$^{\circ}$E/55-90$^{\circ}$SE, GSet 2: N2-8$^{\circ}$E/56-86$^{\circ}$SE, GSet 3: N46-72$^{\circ}$W/60-85$^{\circ}$NE, GSet 4:Nl2-38$^{\circ}$W/15-40$^{\circ}$SW and from subsurface; HSet 1: N50-90$^{\circ}$E/55-90$^{\circ}$SE, HSet 2: N10-30$^{\circ}$E/50-70$^{\circ}$SE, HSet 3: N20-60$^{\circ}$W/50-80$^{\circ}$NE, HSet 4: N10-50$^{\circ}$E/$\leq$40$^{\circ}$NW. Among them, GSet 1, GSet 3 and HSet 1, HSet 3 are the most intensely developed fracture sets in the study area. The mean fracture spacings of HSet 1 are 30-47cm and code 1 fractures, such as faults and open fractures, comprise 21.0-42.9 percent of the whole fractures in each borehole. HSet 3 shows the mean fracture spacings of 55-57cm and the ratio of code 1 fractures is 15.4-26.9 percent. In spite of the mean fracture spacing of 239cm, code 1 fractures of HSet 4 have the highest ratio of 54.5 percent. From the fact that faults or open fractures have high hydraulic conductivity, it can be inferred that the three fracture sets of N55-85$^{\circ}$E/50-80$^{\circ}$SE, N20-60$^{\circ}$W/50-75$^{\circ}$NE and N10-30$^{\circ}$E/$\leq$30$^{\circ}$NW from a fracture system of relatively high conductivity. It is indirectly verified with geophysical loggings and constant injection tests performed in the boreholes.

  • PDF

시추공 유속측정기(Borehole Flowmeter)를 이용한 암반의 구간별 수리전도도 산정

  • 구민호;차장환;이주형;박창희;정복선
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.93-97
    • /
    • 2001
  • 시추공의 구간별 수리전도를 추정하는 방법으로는 수압시험(packer test)이 많이 이용되는데 최근에는 유속측정기(flowmeter)를 이용한 시추공 검층법이 개발되어 활발한 연구가 진행 중이다. 본 연구에서는 열원(heat-pulse) 공급 방식의 유속측정기를 이용하여 공주대학 교내에 설치된 시추공에서 자연 유속(ambient flow) 및 양수 유발 유속(pump-induced flow)을 측정하였으며, 자료를 분석하여 수리전도도의 수직적인 분포를 산정하였다. 분석 결과는 수압시험에 의해 산정된 수리전도도의 분포와 잘 일치하였으며, BIPS에 의해 촬영된 시추공 영상 자료와 비교함으로써 지하수 유동과 관련된 투수성 단열(conductive fracture) 들의 수직적인 위치를 정확하게 파악할 수 있었다. 분석 결과는 암반 대수층 내에 발달된 단열망(fracture network)에 대한 3차원적인 정보를 제공할 수 있으며, 이는 효과적인 지하수 모니터링, 모델링, 및 정화 설계(remedial design)에 필요한 기초 자료로 활용될 수 있을 것으로 기대된다.

  • PDF

단일공에서 정압주입시험을 이용한 단열투수량계수 산출

  • Park Jun-Hyeong;Park Gyeong-U;Bae Dae-Seok;Kim Gyo-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.288-291
    • /
    • 2005
  • 방사성폐기물 처분연구의 일환으로 단열 암반지역의 지하수 유동에 있어서 각 단열조의 투수량계수를 알아보기 위하여 연구지역에 설치된 3기의 시추공에서 초음파 검층, 정압주입시험 및 유동차원 해석을 수행하였다. 단열은 방향성, 틈의 크기 등의 그 분포 특성으로 인해 각 시험구간내의 지하수 유동에 있어서, 유동형태 및 단열투수량계수를 좌우하므로 일반적으로 수리특성에 널리 이용되는 다공성매질의 연속체 개념을 통한 해석의 적용에 신중성을 고려할 필요가 있다.

  • PDF

A Case Study of Correlation between Inflows and Geological Structures around Underground Caverns (지하 유류저장 공동의 지질구조와 공동누수량 상호관계에 관한 사례)

  • 전한석
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.79-93
    • /
    • 2000
  • When caverns are excavated, it is very important to understand the distribution and charateristics of geological structures because the structures have an significant effect on grouting, rock reinforcement, and groundwater flow, etc. The main water bearing fractures have an orientation of N50~60W and these fractures are known as tension fractures. Their orientation coincides with a long elliptical axis ofpumping test, and they cross the tension fractures of N10~30E. They have typical fracture systems ofrhombic type in this area.

  • PDF

Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition (암반의 불균질성을 고려한 불포화대 지하수 유동 평가)

  • Ha, Jaechul;Lee, Jeong Hwan;Cheong, Jae-yeol;Jung, Haeryong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • We present the results of two-dimensional numerical simulations predicting the flow of groundwater in a fractured unsaturated zone. We applied the k-field distribution of permeability derived from discrete fracture network (DFN) modeling as the hydraulic properties of a model domain. To model an unsaturated zone, we set the depth from the ground surface to the underground aquifer. The rate of water infiltration into the unsaturated zone was divided into two parts, an artificial structure surface and unsaturated soil zone. The movement of groundwater through the unsaturated zone was simulated with particular emphasis on contaminant transport. It was clearly observed that the contaminants dissolved in groundwater transported vertically from the ground surface to the saturated zone.

Determination of the Fracture Hydraulic Parameters for Three Dimensional Discrete Fracture Network Modeling (3차원 단열망모델링을 위한 단열수리인자 도출)

  • 김경수;김천수;배대석;김원영;최영섭;김중렬
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.80-87
    • /
    • 1998
  • Since groundwater flow paths have one of the major roles to transport the radioactive nuclides from the radioactive waste repository to the biosphere, the discrete fracture network model is used for the rock block scale flow instead of the porous continuum model. This study aims to construct a three dimensional discrete fracture network to interpret the groundwater flow system in the study site. The modeling work includes the determination of the probabilistic distribution function from the fracture geometric and hydraulic parameters, three dimensional fracture modeling and model calibration. The results of the constant pressure tests performed in a fixed interval length at boreholes indicate that the flow dimension around boreholes shows mainly radial to spherical flow pattern. The fracture transmissivity value calculated by Cubic law is 6.12${\times}$10$\^$-7/ ㎡/sec with lognormal distribution. The conductive fracture intensity estimated by FracMan code is 1.73. Based on this intensity, the total number of conductive fractures are obtained as 3,080 in the rock block of 100 m${\times}$100 m${\times}$100 m.

  • PDF

Analysis of a Groundwater Flow System in Fractured Rock Mass Using the Concept of Hydraulic Compartment (수리영역 개념을 적용한 단열암반의 지하수유동체계 해석)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.69-83
    • /
    • 2006
  • This study aims to evaluate a complex groundwater flow system around the underground oil storage caverns using the concept of hydraulic compartment. For the hydrogeological analysis, the hydraulic testing data, the evolution of groundwater levels in 28 surface monitoring boreholes and pressure variation of 95 horizontal and 63 vertical water curtain holes in the caverns were utilized. At the cavern level, the Hydraulic Conductor Domains(fracture zones) are characterized one local major fracture zone(NE-1)and two local fracture zones between the FZ-1 and FZ-2 fracture zones. The Hydraulic Rock Domain(rock mass) is divided into four compartments by the above local fracture zones. Two Hydraulic Rock Domains(A, B) around the FZ-2 zone have a relatively high initial groundwater pressures up to $15kg/cm^2$ and the differences between the upper and lower groundwater levels, measured from the monitoring holes equipped with double completion, are in the range of 10 and 40 m throughout the construction stage, indicating relatively good hydraulic connection between the near surface and bedrock groundwater systems. On the other hand, two Hydraulic Rock Domains(C, D) adjacent to the FZ-1, the groundwater levels in the upper and lower zones are shown a great difference in the maximum of 120 m and the high water levels in the upper groundwater system were not varied during the construction stage. This might be resulted from the very low hydraulic conductivity$(7.2X10^{-10}m/sec)$ in the zone, six times lower than that of Domain C, D. Groundwater recharge rates obtained from the numerical modeling are 2% of the annual mean precipitation(1,356mm/year) for 20 years.