• Title/Summary/Keyword: 단어 중의성

Search Result 121, Processing Time 0.027 seconds

Ontology Construction and Its Application to Disambiguate Word Senses (온톨로지 구축 및 단어 의미 중의성 해소에의 활용)

  • Kang, Sin-Jae
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.491-500
    • /
    • 2004
  • This paper presents an ontology construction method using various computational language resources, and an ontology-based word sense disambiguation method. In order to acquire a reasonably practical ontology the Kadokawa thesaurus is extended by inserting additional semantic relations into its hierarchy, which are classified as case relations and other semantic relations. To apply the ontology to disambiguate word senses, we apply the previously-secured dictionary information to select the correct senses of some ambiguous words with high precision, and then use the ontology to disambiguate the remaining ambiguous words. The mutual information between concepts in the ontology was calculated before using the ontology as knowledge for disambiguating word senses. If mutual information is regarded as a weight between ontology concepts, the ontology can be treated as a graph with weighted edges, and then we locate the weighted path from one concept to the other concept. In our practical machine translation system, our word sense disambiguation method achieved a 9% improvement over methods which do not use ontology for Korean translation.

Word Sense Disambiguation using Meaning Groups (의미그룹을 이용한 단어 중의성 해소)

  • Kim, Eun-Jin;Lee, Soo-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.747-751
    • /
    • 2010
  • This paper proposes the method that increases the accuracy for tagging word meaning by creating sense tagged data automatically using machine readable dictionaries. The concept of meaning group is applied here, where the meaning group for each meaning of a target word consists of neighbor words of the target word. To enhance the tagging accuracy, the notion of concentration is used for the weight of each word in a meaning group. The tagging result in SENSEVAL-2 data shows that accuracy of the proposed method is better than that of existing ones.

Graph-Based Word Sense Disambiguation Using Iterative Approach (반복적 기법을 사용한 그래프 기반 단어 모호성 해소)

  • Kang, Sangwoo
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.2
    • /
    • pp.102-110
    • /
    • 2017
  • Current word sense disambiguation techniques employ various machine learning-based methods. Various approaches have been proposed to address this problem, including the knowledge base approach. This approach defines the sense of an ambiguous word in accordance with knowledge base information with no training corpus. In unsupervised learning techniques that use a knowledge base approach, graph-based and similarity-based methods have been the main research areas. The graph-based method has the advantage of constructing a semantic graph that delineates all paths between different senses that an ambiguous word may have. However, unnecessary semantic paths may be introduced, thereby increasing the risk of errors. To solve this problem and construct a fine-grained graph, in this paper, we propose a model that iteratively constructs the graph while eliminating unnecessary nodes and edges, i.e., senses and semantic paths. The hybrid similarity estimation model was applied to estimate a more accurate sense in the constructed semantic graph. Because the proposed model uses BabelNet, a multilingual lexical knowledge base, the model is not limited to a specific language.

Semantic Dependency Link Topic Model for Biomedical Acronym Disambiguation (의미적 의존 링크 토픽 모델을 이용한 생물학 약어 중의성 해소)

  • Kim, Seonho;Yoon, Juntae;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.652-665
    • /
    • 2014
  • Many important terminologies in biomedical text are expressed as abbreviations or acronyms. We newly suggest a semantic link topic model based on the concepts of topic and dependency link to disambiguate biomedical abbreviations and cluster long form variants of abbreviations which refer to the same senses. This model is a generative model inspired by the latent Dirichlet allocation (LDA) topic model, in which each document is viewed as a mixture of topics, with each topic characterized by a distribution over words. Thus, words of a document are generated from a hidden topic structure of a document and the topic structure is inferred from observable word sequences of document collections. In this study, we allow two distinct word generation to incorporate semantic dependencies between words, particularly between expansions (long forms) of abbreviations and their sentential co-occurring words. Besides topic information, the semantic dependency between words is defined as a link and a new random parameter for the link presence is assigned to each word. As a result, the most probable expansions with respect to abbreviations of a given abstract are decided by word-topic distribution, document-topic distribution, and word-link distribution estimated from document collection though the semantic dependency link topic model. The abstracts retrieved from the MEDLINE Entrez interface by the query relating 22 abbreviations and their 186 expansions were used as a data set. The link topic model correctly predicted expansions of abbreviations with the accuracy of 98.30%.

Word Ambiguity Resolution for Concept-based Text Classification (개념 기반 문서 분류를 위한 단어 애매성 해소)

  • 강원석;황도삼
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.167-169
    • /
    • 2000
  • 문서 분류 시스템은 문서에 나타난 용어나 개념의 출현 정보를 이용한다. 개념 기반문서분류는 용어를 사용하지 않고 문서의 단어에 나타난 의미를 이용한다. 단어가 중의성을 가지는 경우 그 뜻을 정확히 가리지 않으면 문서에 출현하지 않은 의미를 이용하게 되므로 문서 분류 시스템의 성능이 저하된다. 본 논문은 개념 기반 문서분류를 위하여 단어 애매성 해소를 시도하였다. 문서에 출현된 의미 정보를 이용하여 의미들간의 공기정보를 구하고 이를 이용하여 단어의 애매성을 해소하였다. 단어의 의미정보는 시소러스 도구를 통해 획득하고 의미들간의 공기정보는 의미들간의 동시 출현 정보를 획득하여 구축하였다. 본 시스템은 문서 분류 등 자연어처리 분야에 이용할 수 있어 효용가치가 높다.

  • PDF

Ontology-based Automated Metadata Generation Considering Semantic Ambiguity (의미 중의성을 고려한 온톨로지 기반 메타데이타의 자동 생성)

  • Choi, Jung-Hwa;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.986-998
    • /
    • 2006
  • There has been an increasing necessity of Semantic Web-based metadata that helps computers efficiently understand and manage an information increased with the growth of Internet. However, it seems inevitable to face some semantically ambiguous information when metadata is generated. Therefore, we need a solution to this problem. This paper proposes a new method for automated metadata generation with the help of a concept of class, in which some ambiguous words imbedded in information such as documents are semantically more related to others, by using probability model of consequent words. We considers ambiguities among defined concepts in ontology and uses the Hidden Markov Model to be aware of part of a named entity. First of all, we constrict a Markov Models a better understanding of the named entity of each class defined in ontology. Next, we generate the appropriate context from a text to understand the meaning of a semantically ambiguous word and solve the problem of ambiguities during generating metadata by searching the optimized the Markov Model corresponding to the sequence of words included in the context. We experiment with seven semantically ambiguous words that are extracted from computer science thesis. The experimental result demonstrates successful performance, the accuracy improved by about 18%, compared with SemTag, which has been known as an effective application for assigning a specific meaning to an ambiguous word based on its context.

Bidirectional LSTM-RNNs-CRF for Named Entity Recognition in Korean (양방향 LSTM-RNNs-CRF를 이용한 한국어 개체명 인식)

  • Shin, Youhyun;Lee, Sang-goo
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.340-341
    • /
    • 2016
  • 개체명 인식은 질의 응답, 정보 검색, 기계 번역 등 다양한 분야에서 유용하게 사용되고 있는 기술이다. 개체명 인식의 경우 인식의 대상인 개체명이 대부분 새롭게 등장하거나 기존에 존재하는 단어와 중의적 의미를 갖는 고유한 단어라는 문제점이 있다. 본 논문에서는 한국어 개체명 인식에서 미등록어 및 중의성 문제를 해결하기 위한 딥 러닝 모델을 제안한다. 제안하는 모델은 형태소 및 자음/모음을 이용하여 새롭게 등장하는 단어에 대한 기존 단어와의 형태적 유사성을 고려한다. 또한 임베딩 및 양방향 LSTM-RNNs-CRF 모델을 이용하여, 각 입력 값의 문맥에 따른 의미적 유사성, 문법적 유사성을 고려한다. 제안하는 딥 러닝 모델을 사용하여, F1 점수 85.71의 결과를 얻었다.

  • PDF

Bidirectional LSTM-RNNs-CRF for Named Entity Recognition in Korean (양방향 LSTM-RNNs-CRF를 이용한 한국어 개체명 인식)

  • Shin, Youhyun;Lee, Sang-goo
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.340-341
    • /
    • 2016
  • 개체명 인식은 질의 응답, 정보 검색, 기계 번역 등 다양한 분야에서 유용하게 사용되고 있는 기술이다. 개체명 인식의 경우 인식의 대상인 개체명이 대부분 새롭게 등장하거나 기존에 존재하는 단어와 중의적 의미를 갖는 고유한 단어라는 문제점이 있다. 본 논문에서는 한국어 개체명 인식에서 미등록어 및 중의성 문제를 해결하기 위한 딥 러닝 모델을 제안한다. 제안하는 모델은 형태소 및 자음/모음을 이용하여 새롭게 등장하는 단어에 대한 기존 단어와의 형태적 유사성을 고려한다. 또한 임베딩 및 양방향 LSTM-RNNs-CRF 모델을 이용하여, 각 입력 값의 문맥에 따른 의미적 유사성, 문법적 유사성을 고려한다. 제안하는 딥 러닝 모델을 사용하여, F1 점수 85.71의 결과를 얻었다.

  • PDF

Characteristics of Resolving Syntatic Ambiguity in Normals and Aphasic (한국어 구문 중의성 해결과정 : 정상인과 명칭성 실어증 환자의 구문정보처리 특성)

  • Kim, Yoon-Jung;Kim, Su-Jung;Jung, Jae-Bum;Nam, Ki-Chun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.470-475
    • /
    • 1999
  • 문장을 이해하기 위해서는 각 단어를 이해한 후에 이 단어들이 문장 내에서 어떠한 기능을 담당하고 있는지 그 구조를 파악해야 한다. 한국어 정보 처리에 있어서 명칭성 실어증 환자는 어떠한 방식으로 이러한 문장 구조를 파악하는지 정상인과의 비교를 통해 그 특성을 살펴보고자 하는 데 본 연구의 목적이 있다. 실험 재료로는 구문 중의성 문장을 사용하였는데, 구문 중의성이란 가령 '정치가'와 같은 어절이 '정치+가(주격조사)'나, '정치+가(접미사)' 모두를 뜻할 수 있음을 말한다. 본 연구에서는 이러한 중의성을 이해하는 과정을 알아보기 위해 중의성 해결 지역에서의 읽기 시간(reading time)을 측정하였으며, 실험 과제는 자기 조절 읽기 과제(self-paced reading task)를 사용하였다. 그 결과 정상인 피험자와 마찬가지로 '정치가'와 같은 중의적 어절이 주어로 쓰였을 때에는 중의적 문장 / 비중의적 문장간의 차이가 없었으나 '명사+접사'로 해석해야 할 경우에는 둘 간의 차이가 크게 나타나 피험자였던 명칭성 실어증 환자의 경우 이러한 중의성을 해결하면서 읽는 데에는 손상이 없는 것으로 보였다. 단 전체적인 문장을 읽는데에는 시간이 오래 걸려 역시 문장을 읽고 이해하는 데에는 어려움을 겪는 것으로 나타났다. 따라서, 명칭성 실어증 환자는 문장 산출의 어려움이 구문적 정보처리에서의 문제라기보다는 어휘 정보를 적절하게 인출하지 못하기 때문에 나타나는 것으로 추론된다.

  • PDF

Predictive Morphological Analysis of Korean with Dynamic Programming (동적 프로그래밍기법에 근거한 예측중심의 한국어 형태소 분석)

  • 김덕봉;최기선
    • Korean Journal of Cognitive Science
    • /
    • v.4 no.2
    • /
    • pp.145-180
    • /
    • 1994
  • In this paper,we present an efficient morphological analysis model for Korean which produces from an input word all the feasible sequences of morphemes in the word.This model is deterministic in applying spelling rules,and has few redundant computations in processing complex and ambiguous words.This is the effect of three types of new techniques:first,a new method for interpreting speilling rules;second,predictive rule applications which restrict to the spelling rules suitable for the input word;third,the use of dynamic programming which enables the analyzer to avoid recomputing analyzed substring in case the input word is morphologically ambiguous.our model has been experimented with 413,975 word randomly selected from the corpus of Korean elementary textbooks.Experimental results show that our model guarantees fast and reliable processing.