• Title/Summary/Keyword: 단어 중의성

Search Result 121, Processing Time 0.02 seconds

An Iterative Approach to Graph-based Word Sense Disambiguation Using Word2Vec (Word2Vec을 이용한 반복적 접근 방식의 그래프 기반 단어 중의성 해소)

  • O, Dongsuk;Kang, Sangwoo;Seo, Jungyun
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.1
    • /
    • pp.43-60
    • /
    • 2016
  • Recently, Unsupervised Word Sense Disambiguation research has focused on Graph based disambiguation. Graph-based disambiguation has built a semantic graph based on words collocated in context or sentence. However, building such a graph over all ambiguous word lead to unnecessary addition of edges and nodes (and hence increasing the error). In contrast, our work uses Word2Vec to consider the most similar words to an ambiguous word in the context or sentences, to rebuild a graph of the matched words. As a result, we show a higher F1-Measure value than the previous methods by using Word2Vec.

  • PDF

근접 문맥정보와 대규모 웹 데이터를 이용한 단어 의미 중의성 해소

  • Kang, Sin-Jae;Kang, In-Su
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.208-211
    • /
    • 2009
  • 본 논문은 구글(Google), 워드넷(WordNet)과 같이 공개된 웹 자원과 리소스를 이용한 비교사학습(Unsupervised learning) 방법을 제안하여 단어 의미의 중의성 문제를 해결하고자 한다. 구글 검색 API를 이용하여 단어의 확장된 근접 문맥정보를 추출하고, 워드넷의 계층체계와 synset을 이용하여 단어 의미 구분정보를 자동 추출한 후, 추출된 정보 간 유사도 계산을 통해 중의성을 갖는 단어의 의미를 결정한다.

  • PDF

Word Sense Disambiguation using Korean Word Space Model (한국어 단어 공간 모델을 이용한 단어 의미 중의성 해소)

  • Park, Yong-Min;Lee, Jae-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.41-47
    • /
    • 2012
  • Various Korean word sense disambiguation methods have been proposed using small scale of sense-tagged corpra and dictionary definitions to calculate entropy information, conditional probability, mutual information and etc. for each method. This paper proposes a method using Korean Word Space model which builds word vectors from a large scale of sense-tagged corpus and disambiguates word senses with the similarity calculation between the word vectors. Experiment with Sejong morph sense-tagged corpus showed 94% precision for 200 sentences(583 word types), which is much superior to the other known methods.

Word Sense Disambiguation Using Knowledge Embedding (지식 임베딩 심층학습을 이용한 단어 의미 중의성 해소)

  • Oh, Dongsuk;Yang, Kisu;Kim, Kuekyeng;Whang, Taesun;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.272-275
    • /
    • 2019
  • 단어 중의성 해소 방법은 지식 정보를 활용하여 문제를 해결하는 지식 기반 방법과 각종 기계학습 모델을 이용하여 문제를 해결하는 지도학습 방법이 있다. 지도학습 방법은 높은 성능을 보이지만 대량의 정제된 학습 데이터가 필요하다. 반대로 지식 기반 방법은 대량의 정제된 학습데이터는 필요없지만 높은 성능을 기대할수 없다. 최근에는 이러한 문제를 보완하기 위해 지식내에 있는 정보와 정제된 학습데이터를 기계학습 모델에 학습하여 단어 중의성 해소 방법을 해결하고 있다. 가장 많이 활용하고 있는 지식 정보는 상위어(Hypernym)와 하위어(Hyponym), 동의어(Synonym)가 가지는 의미설명(Gloss)정보이다. 이 정보의 표상을 기존의 문장의 표상과 같이 활용하여 중의성 단어가 가지는 의미를 파악한다. 하지만 정확한 문장의 표상을 얻기 위해서는 단어의 표상을 잘 만들어줘야 하는데 기존의 방법론들은 모두 문장내의 문맥정보만을 파악하여 표현하였기 때문에 정확한 의미를 반영하는데 한계가 있었다. 본 논문에서는 의미정보와 문맥정보를 담은 단어의 표상정보를 만들기 위해 구문정보, 의미관계 그래프정보를 GCN(Graph Convolutional Network)를 활용하여 임베딩을 표현하였고, 기존의 모델에 반영하여 문맥정보만을 활용한 단어 표상보다 높은 성능을 보였다.

  • PDF

A Word Sense Disambiguation for Korean Language Using Deep Learning (딥러닝을 이용한 한국어 어의 중의성 해소)

  • Kim, Hong-Jin;Kim, Hark-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.380-382
    • /
    • 2019
  • 어의 중의성 문제는 자연어 분석 과정에서 공통적으로 발생하는 문제로 한 가지의 단어 표현이 여러 의미로 해석될 수 있기 때문에 발생한다. 이를 해결하기 위한 어의 중의성 해소는 입력 문장 중 여러 개의 의미로 해석될 수 있는 단어가 현재 문맥에서 어떤 의미로 사용되었는지 분류하는 기술이다. 어의 중의성 해소는 입력 문장의 의미를 명확하게 해주어 정보검색의 성능을 향상시키는데 중요한 역할을 한다. 본 논문에서는 딥러닝을 이용하여 어의 중의성 해소를 수행하며 기존 모델의 단점을 극복하여 입력 문장에서 중의적 단어를 판별하는 작업과 그 단어의 의미를 분류하는 작업을 동시에 수행하는 모델을 제안한다.

  • PDF

Word Sense Disambiguation of Korean Verbs Using Weight Information from Context (가중치 정보를 이용한 한국어 동사의 의미 중의성 해소)

  • Lim, Soo-Jong;Park, Young-Ja;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.425-429
    • /
    • 1998
  • 본 논문은 문맥에서 추출한 가중치 정보를 이용한 한국어 동사의 의미 중의성 해소 모델을 제안한다. 중의성이 있는 단어가 쓰인 문장에서 그 단어의 의미 결정에 영향을 주는 단어들로 의미 결정자 벡터를 구성하고, 사전에서 그 단어의 의미 항목에 쓰인 단어들로 의미 항목 벡터를 구성한다. 목적 단어의 의미는 두 벡터간의 유사도 계산에 의해 결정된다. 벡터간의 유사도 계산은 사전에서 추출된 공기 관계와 목적 단어가 속한 문장에서 추출한 거리와 품사정보에 기반한 가중치 정보를 이용하여 이루어진다. 4개의 한국어 동사에 대해 내부실험과 외부실험을 하였다. 내부 실험은 84%의 정확률과 baseline을 기준으로 50%의 성능향상, 외부 실험은 75%의 정확률과 baseline을 기준으로 40 %의 성능향상을 보인다.

  • PDF

Word Sense Disambiguation Using Word Link and Word Cooccurrence (단어링크와 공기 단어를 이용한 의미중의성 해소)

  • 구영석;나동렬
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.21-27
    • /
    • 2002
  • 본 논문은 문장 안에서 의미 중의성을 갖는 단어가 출현했을 때 그 단어가 어떤 의미로 사용되고 있는지 판별해 주는 방법을 제시하고자 한다. 이를 위해서 먼저 중의적 의미를 가지는 단어의 각 의미 (sense) 마다에 대하여 이 의미를 나타내는 주요단어 즉 종자단어와 연관성이 있는 단어들로 벡터를 구성하여 이 의미를 나타내고자 한다. 종자단어와 말뭉치의 문장을 통하여 연결된 경로를 가진 단어는 이 종자단어에 해당하는 의미를 나타내는 데 기여하는 정보로 본 것이다. 경로는 동일 문장에서 나타나는 두 단어 사이는 링크가 있다고 보고 이러한 링크를 통하여 이루어 질 수 있는 연결 관계를 나타낸다. 이 기법의 장점은 데이터 부족으로 야기되는 문제를 경감시킬 수 있다는 점이다. 실험을 위해 Hantec 품사 부착된 말뭉치를 이용하여 의미정보벡터를 구축하였으며 ETRI 품사 부착된 말뭉치에서 중의적 단어가 포함된 문장을 추출하여 실시하였다. 실험 결과 기존의 방법보다 나은 성능을 보임이 밝혀졌다.

  • PDF

Word Sense Disambiguation using Word2Vec (Word2Vec를 이용한 단어 의미 모호성 해소)

  • Kang, Myung Yun;Kim, Bogyum;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.81-84
    • /
    • 2015
  • 자연어 문서에 출현하는 단어에는 중의적 단어가 있으며, 이 단어에서 발생되는 의미 모호성은 대개 그 문맥에 따라 해소된다. 의미 모호성 해소 연구 중, 한국어 단어 공간 모델 방법은 의미 태그 부착 말뭉치를 이용하여 단어의 문맥 정보를 구축하고 이를 이용하여 모호성을 해결하는 연구로서 비교적 좋은 성능을 보였다. 본 연구에서는 Word2Vec를 이용하여 기존 연구인 한국어 단어 공간 모델의 단어 벡터를 효과적으로 축소할 수 있는 방법을 제안한다. 세종 형태 의미 분석 말뭉치로 실험한 결과, 제안한 방법이 기존 성능인 93.99%와 유사한 93.32%의 정확률을 보이면서도 약 7.6배의 속도 향상이 있었다.

  • PDF

Word Sense Disambiguation using Semantically Similar Words (유사어를 이용한 단어 의미 중의성 해결)

  • Seo, Hee-Chul;Lee, Ho;Baek, Dae-Ho;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.304-309
    • /
    • 1999
  • 본 논문에서는 의미계층구조에 나타난 유사어 정보를 이용해서 단어 의미 중의성을 해결하고자 한다. 의미계층구조를 이용한 기존의 방법에서는 의미 벡터를 이용해서 단어 의미 중의성을 해결했다. 의미 벡터는 의미별 학습 자료에서 획득되는 것으로 유사어들의 공통적인 특징만을 이용하고, 유사어 개별 특징은 이용하지 않는다. 본 논문에서는 유사어 개별 특징을 이용하기 위해서 유사어 벡터를 이용해서 단어 의미 중의성을 해결한다. 유사어 벡터는 유사어별 학습 자료에서 획득되는 것으로, 유사어의 개별 정보를 가지고 있는 벡터이다. 세 개의 한국어 명사에 대한 실험 결과, 의미 벡터를 이용하는 것보다 유사어 벡터를 이용하는 경우에 평균 9.5%정도의 성능향상이 있었다.

  • PDF

Word Sense Disambiguation Method Using Co-occurrence Information (공기정보를 이용한 단어 의미 중의성 해결 방안)

  • Park, Yo-Sep;Kim, Gyeong-Im;Park, Hyuk-Ro
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.177-178
    • /
    • 2010
  • 단어 의미 중의성은 자연언어처리 분야에서의 주요 관심 분야이다. 한국어에서의 단어 의미 중의성 문제는 다른 언어에 비하여 연구가 미흡한 상태이다. 기존 연구에서는 빈도 수에 기반한 공기 정보 벡터를 이용한 방법에서 처리되지 못하는 경우가 발생하였다. 또한 사전에 기반한 상위어 추출 시에 정형화된 형태가 아닌 경우에 어려움이 발생하였다. 본 논문에서는 상호정보량을 추가하여 공기 정보 처리 과정 시에 발생하는 오류를 최소화 하였다. 또한 대상 명사의 상위어 추출 문제를 해결하기 위해 어휘 지식 베이스를 적용하였다.

  • PDF