• 제목/요약/키워드: 단어 의미 표현

검색결과 208건 처리시간 0.031초

시맨틱 네트워크를 통한 문학작품 속 인물과 의상의 관계 -소설 「노르웨이의 숲」- (The Relationship Between Character and Costume in literary Work using Semantic networks -The novel 「Norwegian Wood」-)

  • 최영현;김성은;이규혜
    • 디지털융복합연구
    • /
    • 제19권1호
    • /
    • pp.307-314
    • /
    • 2021
  • 본 연구에서는 시맨틱 네트워크의 원리를 장편소설에 적용하여, 문서 전체의 구조를 파악하고 단어와 단어 간의발현 관계를 알아보고자 했다. 무라카미 하루키의 소설 '노르웨이의 숲'을 분석 대상으로, 등장인물의 상징과 관계, 성격특성, 의상 표현을 네트워크 분석을 통해 분석했다. CNM 군집화 알고리즘을 통해 소설 속 등장인물들의 상징과 인물간의 관계 속성을 확인할 수 있었다. 이에 따라, 소설 속 등장인물의 관계와 인물이 상징하는 잠재적인 의미가 전체 네트워크 구조 내에서 서로 유사한 구조적 특성을 가지며 동일 집단에 나타나고 있음을 확인할 수 있었다. 작가가 의도한 세계관 내에서 만든 등장인물 간의 관계에 대한 묘사나 상징들을 파악할 수 있었다. 인물의 성격, 불안정한 정신상태, 심경 변화가 연결중심성이 높은 함축적인 몇 개의 단어를 통해 나타나고 있었다. 인물의 특성에 따른 의상 표현 역시 인물을 설명하는 단서로 적절하게 연결되는 것을 확인할 수 있었다. 본 연구는 융합연구로써, 문학작품을 대상으로 새로운 방법론을 제시했다는데 학술적 의의가 있다.

토픽 모델링 기반 과학적 지식의 불확실성의 흐름에 관한 연구 (The Stream of Uncertainty in Scientific Knowledge using Topic Modeling)

  • 허고은
    • 정보관리학회지
    • /
    • 제36권1호
    • /
    • pp.191-213
    • /
    • 2019
  • 과학적 지식을 얻는 과정은 연구자의 연구를 통해 이루어진다. 연구자들은 과학의 불확실성을 다루고 과학적 지식의 확실성을 구축해나간다. 즉, 과학적 지식을 얻기 위해서 불확실성은 반드시 거쳐가야 하는 필수적인 단계로 인식되고 있다. 현존하는 불확실성의 특성을 파악하는 연구는 언어학적 접근의 hedging 연구를 통해 소개되었으며 컴퓨터 언어학에서 수작업 기반으로 불확실성 단어 코퍼스를 구축해왔다. 기존의 연구들은 불확실성 단어의 단순 출현 빈도를 기반으로 특정 학문 영역의 불확실성의 특성을 파악해오는데 그쳤다. 따라서 본 연구에서는 문장 내 생의학적 주장이 중요한 역할을 하는 생의학 문헌을 대상으로 불확실성 단어 기반 과학적 지식의 패턴을 시간의 흐름에 따라 살펴보고자 한다. 이를 위해 생의학 온톨로지인 UMLS에서 제공하는 의미적 술어를 기반으로 생의학 명제를 분석하였으며, 학문 분야의 패턴을 파악하는데 용이한 DMR 토픽 모델링을 적용하여 생의학 개체의 불확실성 기반 토픽의 동향을 종합적으로 파악하였다. 시간이 흐름에 따라 과학적 지식의 표현은 불확실성이 감소하는 패턴으로 연구의 발전이 이루어지고 있음을 확인하였다.

BERT를 이용한 딥러닝 기반 소스코드 취약점 탐지 방법 연구 (A BERT-Based Deep Learning Approach for Vulnerability Detection)

  • 김문회;오희국
    • 정보보호학회논문지
    • /
    • 제32권6호
    • /
    • pp.1139-1150
    • /
    • 2022
  • SW 산업의 급속한 발전과 함께 새롭게 개발되는 코드와 비례해서 취약한 코드 또한 급증하고 있다. 기존에는 전문가가 수동으로 코드를 분석하여 취약점을 탐지하였지만 최근에는 증가하는 코드에 비해서 분석하는 인력이 부족하다. 이 때문에 기존 Vuldeepecker와 같은 많은 연구에서는 RNN 기반 모델을 이용하여 취약점을 탐지하였다. 그러나 RNN 모델은 코드의 양이 방대할수록 새롭게 입력되는 코드만 학습되고 초기에 입력된 코드는 최종 예측 결과에 영향을 주지 못하는 한계점이 있다. 또한 RNN 기반 방법은 입력에 Word2vec 모델을 사용하여 단어의 의미를 상징하는 embedding을 먼저 학습하여 고정 값으로 RNN 모델에 입력된다. 이는 서로 다른 문맥에서 다른 의미를 표현하지 못하는 한계점이 있다. BERT는 Transformer 모델을 기본 레이어로 사용하여 각 단어가 전체 문맥에서 모든 단어 간의 관계를 계산한다. 또한 MLM과 NST 방법으로 문장 간의 앞뒤 관계를 학습하기 때문에 취약점 탐지와 같은 코드 간 관계를 분석해야 할 필요가 있는 문제에서 적절한 방법이다. 본 논문에서는 BERT 모델과 결합하여 취약점 탐지하는 연구를 수행하였고 실험 결과 취약점 탐지의 정확성이 97.5%로 Vuldeepecker보다 정확성 1.5%. 효율성이 69%를 증가하였다.

단어 쓰임새 정보와 신경망을 활용한 한국어 Hedge 인식 (Korean Hedge Detection Using Word Usage Information and Neural Networks)

  • 임미영;강신재
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권9호
    • /
    • pp.317-325
    • /
    • 2017
  • 본 논문에서는 한국어 문장을 대상으로 불확실한 사실이나 개인적인 추측으로 인해 중요하지 않다고 판단되는 문장, 즉 Hedge 문장들을 분류해 내고자 한다. 기존 영어권 연구에서는 Hedge 문장들을 분류할 때 단어의 의존관계 정보가 여러 형태로 활용되고 있으나, 한국어 연구에서는 사용되고 있지 않음을 확인하였다. 또 기존의 워드 임베딩(Word Embedding) 기법에서 단어의 쓰임새 정보가 학습된다는 점을 인지하였다. 단어의 쓰임새 정보가 어느 정도 의존관계를 표현할 수 있을 것으로 보고 워드 임베딩 정보를 Hedge 분류 실험에 적용하였다. 기존에 많이 사용되던 SVM과 CRF를 baseline 시스템으로 활용하였고 워드 임베딩과 신경망을 사용하여 비교실험을 하였다. 워드임베딩 데이터는 세종데이터와 온라인에서 수집된 데이터를 합하여 총 150여만 문장을 사용하였고 Hedge 분류 데이터는 수작업으로 구축한 12,517 문장의 뉴스데이터를 사용하였다. 워드 임베딩을 사용한 시스템이 SVM보다 7.2%p, CRF보다 1.6%p 좋은 성능을 내는 것을 확인하였다. 이는 단어의 쓰임새 정보가 한국어 Hedge 분류에서 긍정적인 영향을 미친다는 것을 의미한다.

코퍼스로부터 형태소 분석을 위한 사전 구성 (A Dictionay Composition for Morphological Analyzer from Corpus)

  • 정민수;정규철;조원홍
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.316-320
    • /
    • 1998
  • 한국어나 일본어처럼 문법형태소의 기능에 의해 단어의 통사적, 의미적 역할이 결정되는 교착어에서는 형태소 분석이 통사 분석과 의미 분석에 미치는 영향이 크기 때문에 한국어의 분석에 있어서 형태소 분석은 아주 중요하다. 관형적 표현이 많은 한글은 문법 규칙만으론 분석하기가 쉽지 않고, 분기가 많이 생성되므로 오류가 발생할 확률도 높다. 이러한 문제점을 해결하기 위해 본 논문에선 사전을 중심으로 해결하고자 한다. 그러기 위해선 방대한 용량의 사전이 필요로 하게 되고 이를 구축하기 위한 시간과 노력이 요구되므로 이미 구성된 코퍼스를 이용해 사전을 구성하여 많은 시간과 노력을 줄일 수 있도록 한다. 그리고 생성되는 많은 분기 가운데 올바른 경로를 찾아 가기 위해 코퍼스내의 각 태그 결합정보를 추출하고 추출한 결합정보의 통계정보-코퍼스내에서 사용된 빈도수-포함하여 우선순위를 정하도록 한다.

  • PDF

격틀 자동구축과 격틀평가 방법에 관한 연구 (Study on Automatic Construction and Evaluation method of Caseframe)

  • 최용석;이주호;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.272-279
    • /
    • 1999
  • 격틀이란 동사에 대해 필요한 격들과 그 격에 알맞은 단어집합으로 이루어져 있는 것으로 명사와 동사의 의미적 호응을 표현한다. 격틀은 자연언어처리분야에서 주요한 정보로 사용할 수 있다. 의미구분이라든지 번역에서 한국어 생성, 정보검색에서 중요정보 추출 등 잘 구성한 질 높은 격틀은 여러 연구의 질을 높여줄 수 있다. 따라서, 질 좋은 격틀을 구성하기 위한 여러 노력들이 현재 이루어지고 있다. 본 논문에서는 기계 가독형 사전과 말모듬을 이용해서 자동으로 격틀을 구성한다. 자동구성 방법으로 먼저 기계가독형 사전을 이용해서 상위개념 정보를 가지는 분류정보를 구성한다. 말모듬과 사전의 예문들을 형태소 분석한 후에 각각의 예문들을 분류정보를 이용하여 최상위 개념으로 바꾼다. 그리고, 말모듬과 사전의 예문에서 나온 정보들을 통합하므로 해서 자동으로 격틀을 구성한다. 자동으로 격틀을 구성한 후에 수동으로 구성한 격틀과 비교해 본다. 비교하기 위한 평가방법에 대해서 논의한다.

  • PDF

딥러닝 기법을 이용한 가짜뉴스 탐지 (Fake news detection using deep learning)

  • 이동호;이정훈;김유리;김형준;박승면;양유준;신웅비
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.384-387
    • /
    • 2018
  • SNS가 급속도로 확산되며 거짓 정보를 언론으로 위장한 형태인 가짜뉴스는 큰 사회적 문제가 되었다. 본 논문에서는 이를 해결하기 위해 한글 가짜뉴스 탐지를 위한 딥러닝 모델을 제시한다. 기존 연구들은 영어에 적합한 모델들을 제시하고 있으나, 한글은 같은 의미라도 더 짧은 문장으로 표현 가능해 딥러닝을 하기 위한 특징수가 부족하여 깊은 신경망을 운용하기 어렵다는 점과, 형태소 중의성으로 인한 의미 분석의 어려움으로 인해 기존 오델들을 적용하기에는 한계가 있다. 이를 해결하기 위해 얕은 CNN 모델과 음절 단위로 학습된 단어 임베딩 모델인 'Fasttext'를 활용하여 시스템을 구현하고, 이를 학습시켜 검증하였다.

그래프 중심성 분석에 의한 CQI 보고서 핵심어 추출 시스템의 설계 및 개발 (Design and Implementation of Keywords Extraction System from CQI Reports by the Analysis of Graph Centrality)

  • 테이퍼악떠라;임종범;이종혁;길준민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.256-259
    • /
    • 2019
  • 최근 대학교는 CQI(Continuous Quality Improvement) 등의 방대한 교육 관련 데이터를 수집하고 있고 이를 분석하여 교육 및 경영에 활용하고 있다. 핵심어는 텍스트의 내용을 간결하게 표현할 수 있는 단어이다. 그래서 CQI 보고서의 의미를 파악하기 위해서는 먼저 핵심어 추출이 필요하다. CQI 보고서에서 핵심어를 추출하면 이후 정보 검색, 인덱싱, 분류, 클러스터링, 필터링 등과 같은 많은 응용 작업을 용이하게 수행할 수 있다. 따라서 방대한 양의 CQI 보고서로부터 핵심어 추출을 자동화한다면 이후 요약 및 의미 파악에 많은 도움이 될 것이다. 이 논문에서는 CQI 보고서 요약을 위해 자동적으로 핵심어를 추출하는 방법을 제안한다.

위키피디아 의미정보를 이용한 태깅된 웹 이미지 검색 (Tagged Web Image Retrieval with Wikipedia Semantic Information)

  • 이성재;조수선
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.361-364
    • /
    • 2011
  • 오늘날, 웹 공간에서는 사진과 같은 멀티미디어 자료를 공유하기 위하여 다양한 방법으로 문서의 정보를 표현하고 있다. 이러한 정보를 이용하기 위해 제목, 내용등에서 형태소 분석을 통해 의미가 있는 단어들을 이용하는 경우도 있지만 그 문서 혹은 자료와 관련있는 태그를 기입하고 활용하는 것이 보편화 되어 있다. 본 연구에서는 위키피디아 문서를 이용하여 이미지 태그들 사이의 연관성을 활용하여 이미지 검색 순위를 조정하였다. 약 1000만건의 문서로 이루어진 위키피디아를 이용하여 태그들의 연관성을 계산하였으며, 실험결과 태그 기반의 이미지를 검색 할 때 향상된 결과를 얻을 수 있었다.

순환 신경망 기반 언어 모델을 활용한 초등 영어 글쓰기 자동 평가 (Automatic Evaluation of Elementary School English Writing Based on Recurrent Neural Network Language Model)

  • 박영기
    • 정보교육학회논문지
    • /
    • 제21권2호
    • /
    • pp.161-169
    • /
    • 2017
  • 작성된 문서의 문법적 오류 교정을 할 때 맞춤법 검사기를 사용하는 것이 일반적이다. 그러나 초등학생들이 작성한 글 중에는 문법적으로는 옳더라도 자연스럽지 않은 문장이 있을 수 있다. 본 논문에서는 동일한 의미를 가진 2개의 문장이 주어졌을 때, 어떤 것이 더 자연스러운 문장인지 자동 판별할 수 있는 방법을 소개한다. 이 방법은 순환 신경망(recurrent neural network)을 이용하여 장기 의존성(long-term dependencies) 문제를 해결하고, 보조 단어(subword)를 사용하여 희소 단어(rare word) 문제를 해결한다. 약 200만 문장의 단일어 코퍼스를 통해 순환 신경망 기반 언어 모델을 학습하였다. 그 결과, 초등학생들이 주로 틀리는 표현들과 그에 대응하는 올바른 표현을 입력으로 주었을 때, 모든 경우에 대해 자연스러운 표현을 자동으로 선별할 수 있었다. 본 소프트웨어가 스마트 기기에 사용될 수 있는 형태로 구현된다면 실제 초등학교 현장에서 활용 가능할 것으로 기대된다.