단어 표현은 기계학습을 사용하는 자연어 처리 분야에서 중요하다. 단어 표현은 단어를 텍스트가 아닌 컴퓨터가 분별할 수 있는 심볼로 표현하는 방법이다. 기존 단어 임베딩은 대량의 말뭉치를 이용하여 문장에서 학습할 단어의 주변 단어를 이용하여 학습한다. 하지만 말뭉치 기반의 단어 임베딩은 단어의 등장 빈도수나 학습할 단어의 수를 늘리기 위해서는 많은 양의 말뭉치를 필요로 한다. 본 논문에서는 말뭉치 기반이 아닌 단어의 뜻풀이와 단어의 의미 관계(상위어, 반의어)를 이용하며 기존 Word2Vec의 Skip-Gram을 변형한 자질거울모델을 사용하여 단어를 벡터로 표현하는 방법을 제시한다. 기존 Word2Vec에 비해 적은 데이터로 많은 단어들을 벡터로 표현 가능하였으며 의미적으로 유사한 단어들이 비슷한 벡터를 형성하는 것을 확인할 수 있다. 그리고 반의어 관계에 있는 두 단어의 벡터가 구분되는 것을 확인할 수 있다.
본 논문에서는 임상 의사 결정 지원을 위한 UMLS와 위키피디아를 이용하여 지식 정보를 추출하고 질병중심 문서 클러스터와 단어 의미 표현을 이용하여 질의 확장 및 문서를 재순위화하는 방법을 제안한다. 질의로는 해당 환자가 겪고 있는 증상들이 주어진다. UMLS와 위키피디아를 사용하여 병명과 병과 관련된 증상, 검사 방법, 치료 방법 정보를 추출하고 의학 인과 관계를 구축한다. 또한, 위키피디아에 나타나는 의학 용어들에 대하여 단어의 효율적인 의미 추정 기법을 이용하여 질병 어휘의 의미 표현 벡터를 구축하고 임상 인과 관계를 이용하여 질병 중심 문서 클러스터를 구축한다. 추출한 의학 정보를 이용하여 질의와 관련된 병명을 추출한다. 이후 질의와 관련된 병명과 단어 의미 표현을 이용하여 확장 질의를 선택한다. 또한, 질병 중심 문서 클러스터를 이용하여 문서 재순위화를 진행한다. 제안 방법의 유효성을 검증하기 위해 TREC Clinical Decision Support(CDS) 2014, 2015 테스트 컬렉션에 대해 비교 평가한다.
최근 자연어 처리 분야에서 딥 러닝이 많이 사용되고 있다. 자연어 처리에서 딥 러닝의 성능 향상을 위해 단어의 표현이 중요하다. 단어 임베딩은 단어 표현을 인공 신경망을 이용해 다차원 벡터로 표현한다. 본 논문에서는 word2vec의 Skip-gram과 negative-sampling을 이용하여 단어 임베딩 학습을 한다. 단어 임베딩 학습 데이터로 한국어 어휘지도 UWordMap의 용언의 필수논항 의미 제약 정보를 이용하여 구성했으며 250,183개의 단어 사전을 구축해 학습한다. 실험 결과로는 의미 제약 정보를 이용한 단어 임베딩이 유사성을 가진 단어들이 인접해 있음을 보인다.
심층 학습에 기반을 둔 통계적 언어모형에서 가장 중요한 작업은 단어의 분산 표현(Distributed Representation)이다. 단어의 분산 표현은 단어 자체가 가지는 의미를 다차원 공간에서 벡터로 표현하는 것으로서, 워드 임베딩(word embedding)이라고도 한다. 워드 임베딩을 이용한 심층 학습 기반 통계적 언어모형은 전통적인 통계적 언어모형과 비교하여 성능이 우수한 것으로 알려져 있다. 그러나 워드 임베딩 역시 자료 부족분제에서 벗어날 수 없다. 특히 학습데이터에 나타나지 않은 단어(unknown word)를 처리하는 것이 중요하다. 본 논문에서는 고품질 한국어 워드 임베딩을 위하여 단어의 의미적 계층정보를 이용한 워드 임베딩 방법을 제안한다. 기존연구에서 제안한 워드 임베딩 방법을 그대로 활용하되, 학습 단계에서 목적함수가 입력 단어의 하위어, 동의어를 반영하여 계산될 수 있도록 수정함으로써 단어의 의미적 계층청보를 반영할 수 있다. 본 논문에서 제안한 워드 임베딩 방법을 통해 생성된 단어 벡터의 유추검사(analog reasoning) 결과, 기존 방법보다 5%가 증가한 47.90%를 달성할 수 있었다.
본 논문에서는 임상 의사 결정 지원을 위한 UMLS와 위키피디아를 이용하여 지식 정보를 추출하고 질병 중심 문서 클러스터와 단어 의미 표현을 이용하여 질의 확장 및 문서를 재순위화하는 방법을 제안한다. 질의로는 해당 환자가 겪고 있는 증상들이 주어진다. UMLS와 위키피디아를 사용하여 병명과 병과 관련된 증상, 검사 방법, 치료 방법 정보를 추출하고 의학 인과 관계를 구축한다. 또한, 위키피디아에 나타나는 의학 용어들에 대하여 단어의 효율적인 의미 추정 기법을 이용하여 질병 어휘의 의미 표현 벡터를 구축하고 임상 인과 관계를 이용하여 질병 중심 문서 클러스터를 구축한다. 추출한 의학 정보를 이용하여 질의와 관련된 병명을 추출한다. 이후 질의와 관련된 병명과 단어 의미 표현을 이용하여 확장 질의를 선택한다. 또한, 질병 중심 문서 클러스터를 이용하여 문서 재순위화를 진행한다. 제안 방법의 유효성을 검증하기 위해 TREC Clinical Decision Support(CDS) 2014, 2015 테스트 컬렉션에 대해 비교 평가한다.
본 논문에서는 중간언어 설계의 일부분으로, 중간의미 표현을 위한 어휘지식 표현 방안에 관하여 논한다. 기존 중간언어들은 단어의 의미 구별법이 단순한 선택적 제한을 기반으로 하고 있으며, 시소러스체계도 단일하게 유지하고 있다. 따라서, 단어의 의미간 중첩성이 반영되지 못하고 단어의 창조적 사용(creative use)에 대한 대처능력도 떨어진다. 또한 단일 시소러스체계를 통해서는 단어들의 명확한 분류기준을 파악할 수가 없다. 이러한 어휘지식 표현체계의 문제점들을 극복하기 위한 해결책으로서 생성사전(Generative Lexicon)을 도입하고, 중간표현의 관계기호를 효과적으로 파악하기 위한 관점에서의 시소러스 분류체계를 제안한다. 또한 이 같은 어휘지식 표현체계를 이용하여 문장의 구문구조로부터 중간표현을 나타내는 과정을 제시한다.
기계번역에서 올바른 번역 문장을 구성하기 위해서는 원시 문장의 의미를 올바르게 표현하면서 자연스러운 목적 문장을 구성하는 번역어를 선택해야 한다. 본 논문에서는 '단어-의미 의미-단어' 관계, 즉 원시언어의 한 단어는 하나 이상의 의미를 가지고 각 의미는 각기 다른 목적언어 단어로 표현된다는 점에 기반하여, 원시 단어의 의미 분별과 목적 단어 선택을 결합하여 번역어를 선택하는 방식을 제안한다. 기존의 번역방식은 원시 단어에 대한 목적단어를 직접 선택하는 '단어-단어' 관계에 기반하고 있기 때문에, 원시언어를 목적 언어로 직접 대응시키기 위한 지식을 필요로 하여 지식 획득에 어려움이 있었다. 본 논문의 방식에서는 원시 단어의 의미 분별과 목적 언어의 단어 선택의 결합을 통해 번역어를 선택함으로써, 손쉽게 획득할 수 있는 원시 언어와 목적 언어 각각의 지식원에서 번역어 선택을 위한 지식을 자동으로 추출할 수 있다. 또한 원시 언어의 의미와 목적 언어의 쓰임새를 모두 반영하여 충실도와 이해도를 모두 만족시키는 보다 정확한 번역어를 선택할 수 있다.
단어 중의성 해소 방법은 지식 정보를 활용하여 문제를 해결하는 지식 기반 방법과 각종 기계학습 모델을 이용하여 문제를 해결하는 지도학습 방법이 있다. 지도학습 방법은 높은 성능을 보이지만 대량의 정제된 학습 데이터가 필요하다. 반대로 지식 기반 방법은 대량의 정제된 학습데이터는 필요없지만 높은 성능을 기대할수 없다. 최근에는 이러한 문제를 보완하기 위해 지식내에 있는 정보와 정제된 학습데이터를 기계학습 모델에 학습하여 단어 중의성 해소 방법을 해결하고 있다. 가장 많이 활용하고 있는 지식 정보는 상위어(Hypernym)와 하위어(Hyponym), 동의어(Synonym)가 가지는 의미설명(Gloss)정보이다. 이 정보의 표상을 기존의 문장의 표상과 같이 활용하여 중의성 단어가 가지는 의미를 파악한다. 하지만 정확한 문장의 표상을 얻기 위해서는 단어의 표상을 잘 만들어줘야 하는데 기존의 방법론들은 모두 문장내의 문맥정보만을 파악하여 표현하였기 때문에 정확한 의미를 반영하는데 한계가 있었다. 본 논문에서는 의미정보와 문맥정보를 담은 단어의 표상정보를 만들기 위해 구문정보, 의미관계 그래프정보를 GCN(Graph Convolutional Network)를 활용하여 임베딩을 표현하였고, 기존의 모델에 반영하여 문맥정보만을 활용한 단어 표상보다 높은 성능을 보였다.
지금까지의 후처리기법은 문장의 의미 정보를 사용하지 않고 대부분 단어만을 생각하기 때문에 잘못 쓰여지거나 인식된 단어라도 사전에 있으면 그대로 받아들이게 된다. 따라서 본 논문에서는 단어로서 구성이 되지 않는 문자열 뿐만 아니라 의미적으로 잘못 사용된 단어까지도 교정해 줄 수 있는 후처리기법을 제시한다. 제시되는 후처리기법은 문장의 의미론 개념그래프로 표현하여 문장에 쓰여진 각 단어가 문장 내에서 의미적으로 유용한지를 밝혀 낼 수 있도록 한다.
시맨틱 웹 기술의 제안과 더불어 다양한 분야에 온톨로지의 특징을 적용한 기술 개발 연구가 많이 진행되고 있다. 인간이 소유한 개념을 가장 적절하게 표현하기 위해 현재에도 OWL, RDF와 같은 온톨로지 언어의 표현력을 확장시키기 위해 N-ary 관계나 모델-이론 의미론과 같은 개발이 진행되고있다. 본 연구는 한국어에 있어 문장이 내포하는 의미를 정확하게 결정하기 위해 문장의 구조에 따라 달라지는 단어의 의미를 연관할 수 있도록 N-ary 관계와 디자인 기반이 적용된 온톨로지의 지식 표현 방법을 연구하였다. 특히 다양한 지식 영역을 포함하는 다의어(polysemy)와 동의어(synonym)의 특징을 갖는 단어에 있어 각 지식 영역으로 분류되어 각 지식 영역에 있는 유사한 의미를 가진 단어로 확장되어 유사한 의미를 가진 단어가 포함된 문장의 경우 까지도 확장할 수 있는 표현 방법을 연구하였다. 연구의 검증을 위해 사용자가 입력한 병증 문장을 제안된 방법에 따라 구축된 온톨로지내 지식 관계와 의미 결정을 위한 추론 표현 방법을 이용하여 병증의 의미를 결정하고 그에 따른 진단을 제공하는 실험 시스템을 구현하였고, 한국어가 갖고 있는 문장의 유의성, 모호성, 복합성 의 특징을 보유한 증상문들의 실험 결과 의미 결정과 유사 의미 확장에 있어 우수한 성능을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.