• Title/Summary/Keyword: 단어 의미 중의성 해소

검색결과 54건 처리시간 0.023초

한국어 명사 의미 부류 체계의 구축과 활용 (Construction and application of semantic classes of Korean nouns)

  • 강범모;박동호;이성헌;박진호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.247-251
    • /
    • 2001
  • 명사 의미 부류 체계는 언어 처리의 다양한 분야에서 그 필요성이 부각되고 있다. 예를 들어, 기계 번역에 있어서의 단어 의미의 중의성 해소(word sense disambiguation), 정보검색 시스템에서도 재현율과 정확률의 향상, 추론 시스템 등을 위하여 명사 의미 부류는 중요한 역할을 한다. 명사 의미 부류 체계의 이러한 중요성 때문에 여러 온톨로지(ontology)가 기존에 구축되어 있다. 그런데 이러한 온톨로지들은 대개 순수한 개념적 기준에 입각한 것이며 단어의 통사적 특성을 별로 고려하고 있지 않다. 정보검색 시스템이나 추론 시스템의 경우에는 통사적 고려가 별로 중요하지 않을 수 있으나 기계번역의 경우 통사적 특성에 대한 고려가 매우 중요하다. 이러한 점에 주목하여 21세기 세종계획 전자사전 분과에서는 개념적 기준과 통사적 기준을 모두 고려하여 명사 의미 부류 체계를 구축하고 있다. 즉, 해당 부류에 속하는 명사들이 결합할 수 있는 술어(적정 술어) 등의 통사적 요인을 중요시하여 명사들을 분류하고 있는 것이다. 이에 따라 세종 체언 사전의 모든 명사들에 대해 의미부류 정보가 주어지고, 용언 사전의 용언의 각 논항에 대한 선택제약 정보도 이 명사 의미부류 체계를 이용하여 제시되고 있다. 이러한 정보들은 한국어 처리에 중요한 자료로 이용될 것이다.

  • PDF

중-한 대조분석정보를 이용한 단어정렬 (Word Alignment Using Chinese-Korean Linguistic Contrastive Information)

  • 리금희;김동일;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2002년도 제14회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.40-46
    • /
    • 2002
  • 본 논문에서는 범용 병렬코퍼스에서도 적용할 수 있는 단어정렬의 방법을 제안한다. 단어 단위로 정렬된 병렬코퍼스는 자연언어처리의 다양한 분야에 도움을 준다. 예를 들면 변환기반의 기계번역에서 변환패턴의 구축, MWTU(Multi Word Translation Unit)의 자동추출, 사전 구축, 의미 중의성 해소 등 분야에 적용된다. 중한 병렬 코퍼스의 단어정렬은 서로 다른 어족간의 관계의 규명을 포함하고 있기 때문에 본 논문에서는 통계적인 모델보다 중한 대역어 사전, 단일어 시소러스, 품사정보 및 언어학적 대조분석 정보 등 기존에 있는 리소스를 이용하여 재현율과 정확률을 높이는 방법에 대해 제시한다. 성능 평가를 위해 중앙일보에서 임의로 추출한 500개 대응문장을 이용하여 실험한 결과 82.2%의 정확률과 64.8%의 재현율을 보였다.

  • PDF

유해어의 공기정보를 활용한 유해 웹문서 필터링 (Harmful Web-document Filtering using Harmful word Co-occurrence)

  • 안형근;이원휘;안동언;정성종
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.7-10
    • /
    • 2006
  • 웹 환경이 일반화되고 웹을 통해 획득할 수 있는 정보가 다양하고 풍부하다. 이 다양하고 풍부한 정보는 유익한 정보 뿐만 아니라 청소년들을 비롯한 사회적으로 보호를 받아야 할 웹 이용자들의 정신건강을 해치는 정보들도 다수 포함되고 있어 사회적 문제가 되고 있다. 본 연구에서는 웹 문서를 필터링하는 수단으로 공기정보를 포함하고 있는 유해어 사전을 활용한다. 유해어 사전 구축은 단순히 유해어 리스트만으로 사전을 구축하지 않고, 유해어 주위의 공기 단어의 정보를 포함시킴으로써 유해어의 중의성에 의한 오분류를 해소하고자 하였다. 즉, 유해어 후보가 1개 이상의 의미를 가지며 각 의미가 유해 정도가 다를 때, 유해어 후보의 등급을 결정하기 위하여 해당 유해어와 같은 문장 혹은 같은 문서에 출현하는 다른 단어 정보를 활용한다. 이렇게 함으로써 문서의 유해 등급을 결정하게 된다.

  • PDF

통계기만 의미중의성 해소를 이용한 정보검색 (Informal ion Retrieval using Word Sense Disambiguation based on Statintical Method)

  • 허정;김현진;장명길
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.508-510
    • /
    • 2002
  • 인터넷의 발전과 더불어 기하급수적으로 늘어난 디지털 정보를 대상으로 사용자의 요구를 만족시키는 정보검색을 하기 위해 자연어처리 기술이 많이 응용되고 있다. 본 논문에서는 정보검색에 자연어 처리 기술 중, 의미중의성 해소(WSD) 기술을 적용하였다. HANTEC 12만 문서를 대상으로 9개의 중의성 단어를 실험한 결과 67.8%의 정확률을 보였다. 본 실험을 통해 WSD의 오분석이 정보검색의 정확률에 상당히 민감한 결과를 초래함을 알 수 있었다. 그리고, WSD 기술이 정보검색에 적용된 떼 발생할 수 있는 여러 문제점들에 대하여 논의하였고, 이 문제점의 근원적인 해결방안은 WSD기술의 발전에 있다는 것을 알 수 있었다.

  • PDF

정제된 의미정보와 시소러스를 이용한 동형이의어 분별 시스템 (A Korean Homonym Disambiguation System Using Refined Semantic Information and Thesaurus)

  • 김준수;옥철영
    • 정보처리학회논문지B
    • /
    • 제12B권7호
    • /
    • pp.829-840
    • /
    • 2005
  • 단어 의미 중의성 해소는 자연언어처리 분야에 매우 중요한 부분이다. 본 논문에서는 사전 뜻풀이 특성을 이용해 기존의 의미정보를 정제하고 유용한 정보인 확률정보, 거리정보 및 격정보 등을 추가한 WSD 모델을 제안하였으며, 사전을 기반으로 구축된 "울산대학교 어휘 지능망(UOU-Word Intelligent Network: U-WIN)" 상의 단어 계층적 구조(시소러스)를 이용하여 의미정보의 자료 부족 문제를 해소하는 모델을 제시하였"다. "21세기 세종 계획"에서 제공하는 150만 어절 규모의 의미 태그 말뭉치를 대상으로 한 실험에서 최다 빈도 의미 결정(Maximum Frequence Class, MFC, 정확률 베이스라인)에 비해 $18.97\%$(명사 $21.73\%$, 동사 $17.11\%$) 정확률 향상을 보였으며, 기존의 확률 가중치와 어절 거리 가중치를 이용한 모델에 비해서는 $10.49\%$(명사 $8.84\%$, 동사 $11.51\%$)의 정확률 향상되었다. 또한 시소러스를 사용하지 않고 확률정보, 거리정보, 격정보 만을 이용한 모델에 비해 $6.12\%$(명사 $5.29\%$, 동사 $6.64\%$) 높은 정확률을 보였다.

단어 간 연관성 측정을 통한 문맥 철자오류 교정 (Context-sensitive Spelling Correction using Measuring Relationship between Words)

  • 최성기;김민호;권혁철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1362-1365
    • /
    • 2013
  • 한국어 텍스트에 나타나는 오류어의 유형은 크게 단순 철자오류와 문맥 철자오류로 구분할 수 있다. 이중 문맥 철자오류는 문맥의 의미 통사적 관계를 고려해야만 해당 어휘의 오류 여부를 알 수 있는 오류로서 철자오류 중 교정 난도가 가장 높다. 문맥 철자오류의 유형은 발음 유상성에 따른 오류, 오타 오류, 문법 오류, 띄어쓰기 오류로 구분할 수 있다. 본 연구에서는 오타 오류에 의해 발생하는 문맥 철자오류를 어의 중의성 해소와 같은 문제로 보고 교정 어휘 쌍을 이용한 통계적 문맥 철자오류 교정 방법을 제안한다. 미리 생성한 교정 어휘 쌍을 대상으로 교정 어휘 쌍의 각 어휘와 주변 문맥 간 의미적 연관성을 통계적으로 측정하여 문맥 철자오류를 검색하고 교정한다. 제안한 방법을 적용한 결과 3개의 교정 어휘 쌍 모두 90%를 넘는 정확도를 보였다.

교차언어 문서검색에서 중의성 해소를 위한 가중치 부여 및 질의어 구조화 방법 (Weighting and Query Structuring Scheme for Disambiguation in CLTR)

  • 정의헌;권오욱;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.175-182
    • /
    • 2001
  • 본 논문은 사전에 기반한 질의변환 교차언어 문서검색에서, 대역어 중의성 문제를 해결하기 위한, 질의어 가중치 부여 및 구조화 방법을 제안한다. 제안하는 방법의 질의 변환 과정은 다음의 세 단계로 이루어진다. 첫째, 대역어 클러스터링을 통해 먼저 질의어 단어의 적합한 의미를 결정짓고, 둘째, 문맥정보와 지역정보를 이용하여 후보 대역어들간의 상호관계를 분석하며, 셋째, 각 후보 대역어들을 연결하여, 후보 질의어를 만들고 각각에 가중치를 부여하여 weighted Boolean 질의어로 생성하게 된다. 이를 통해, 단순하고 경제적이지만, 높은 성능을 낼 수 있는 사전에 의한 질의변환 교차언어 문서검색 방법을 제시하고자 한다.

  • PDF

워드 임베딩을 활용한 관용표현 인식 연구 (Korean Idiom Classification Using Word Embedding)

  • 박서윤;강예지;강혜린;장연지;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.548-553
    • /
    • 2020
  • 우리가 쓰는 일상 언어 중에는 언어적 직관이 없는 사람은 의미 파악이 힘든 관용표현이 존재한다. 관용표현을 이해하기 위해서는 표현에 대한 형태적, 의미적 이해가 수반되어야 하기 때문이다. 기계도 마찬가지로 언어적 직관이 없기 때문에 관용표현에 대한 자연어 처리에는 어려움이 따른다. 특히 일반표현과 중의성 관계에 있는 관용표현의 특성이 고려되지 않은 채 문자적으로만 분석될 위험성이 높다. 본 연구에서는 '관용표현은 주변 문맥과의 관련성이 떨어진다'라는 가정을 중심으로 워드 임베딩을 활용한 관용표현과 일반표현에 대한 구분을 시도하였다. 실험은 4개 표현에 대해 이루어 졌으며 Skip-gram, Fasttext를 활용한 방법을 통해 관용표현은 주변 단어들과의 유사성이 떨어짐을 확인하였다.

  • PDF

위키피디아 기반의 효과적인 개체 링킹을 위한 NIL 개체 인식과 개체 연결 중의성 해소 방법 (A Method to Solve the Entity Linking Ambiguity and NIL Entity Recognition for efficient Entity Linking based on Wikipedia)

  • 이호경;안재현;윤정민;배경만;고영중
    • 정보과학회 논문지
    • /
    • 제44권8호
    • /
    • pp.813-821
    • /
    • 2017
  • 개체 링킹은 입력된 질의에 존재하는 개체를 표현한 개체 표현(entity mention)을 지식베이스에 존재하는 개체와 연결하여 의미를 파악하는 연구이다. 개체 링킹에 관한 연구는 지식 베이스 구축 문제, 다중 표현 문제, 개체 연결 중의성 문제, NIL 개체 인식 문제가 존재한다. 본 연구에서는 지식 베이스 구축 문제와 다중 표현 문제를 해결하기 위해 위키피디아를 기반으로 개체 이름 사전을 구축한다, 또한, 문맥 유사도, 의미적 관련성, 단서 단어 점수, 개체 표현의 개체명 타입 유사도, 개체 이름 매칭 점수, 개체인기도 점수 자질들을 기반으로 SVM(support vector machine)을 학습하여, NIL 개체를 인식하는 문제와 개체 연결 중의성을 해소하는 방법을 제안한다. 구축한 지식 베이스를 기반으로 제안한 두 방법을 순차적으로 적용하였을 때 좋은 개체 링킹 성능을 얻었다. 개체 링킹 시스템의 성능은 NIL 개체 인식 성능이 83.66%, 중의성 해소 성능이 90.81%의 F1 점수를 보였다.

부트스트래핑 알고리즘을 이용한 한국어 격조사의 의미역 결정 (Bootstrapping for Semantic Role Assignment of Korean Case Marker)

  • 김병수;이용훈;나승훈;김준기;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.4-6
    • /
    • 2006
  • 본 논문은 자연언어처리에서 문장의 서술어와 그 서술어가 가지는 명사 논항들 사이의 문법관계를 의미 관계로 사상하는 즉 논항이 서술어에 대해 가지는 역할을 정하는 문제를 다루고 있다. 의미역 결정은 단어의 의미 중의성 해소와 함께 자연언어의 의미 분석의 핵심 문제 중 하나이며 반드시 해결해야 하는 매우 중요한 문제 중 하나이다. 본 연구에서는 언어학적으로 유용한 자원인 세종전자사전을 이용하여 용언격틀사전을 구축하고 격틀 선택 방법으로 의미역을 결정한 후. 결정된 의미역들에 대한 확률 정보를 확률 모델에 적용하여 반복적으로 학습하는 부트스트래핑(Bootstrapping) 알고리즘을 사용하였다. 실험 결과, 기본 모델에 대해 10% 정도의 성능 향상을 보였다.

  • PDF