원격 지도 학습은 자동으로 매우 큰 코퍼스와 지식베이스 간의 주석 데이터를 생성하여 기계 학습에 필요한 학습 데이터를 사람의 손을 빌리지 않고 저렴한 비용으로 만들 수 있어, 많은 연구들이 관계 추출 문제를 해결하기 위해 원격 지도 학습 방법을 적용하고 있다. 그러나 기존 연구들에서는 모델 학습의 입력으로 사용되는 단어 임베딩에서 단어의 동형이의어 성질을 반영하지 못한다는 단점이 있다. 때문에 서로 다른 의미를 가진 동형이의어가 하나의 임베딩 값을 가지다 보니, 단어의 의미를 정확히 파악하지 못한 채 관계 추출 모델을 학습한다고 볼 수 있다. 본 논문에서는 원격 지도 학습 기반 관계 추출 모델에 다중-어의 단어 임베딩을 적용한 모델을 제안한다. 다중-어의 단어 임베딩 학습을 위해 어의 중의성 해소 모듈을 활용하였으며, 관계 추출 모델은 문장 내 주요 특징을 효율적으로 파악하는 모델인 CNN과 PCNN을 활용하였다. 본 논문에서 제안하는 다중-어의 단어 임베딩 적용 관계추출 모델의 성능을 평가하기 위해 추가적으로 2가지 방식의 단어 임베딩을 학습하여 비교 평가를 수행하였고, 그 결과 어의 중의성 해소 모듈을 활용한 단어 임베딩을 활용하였을 때 관계추출 모델의 성능이 향상된 결과를 보였다.
URI spotting (탐지) 문제는 텍스트에 있는 단어열 중에서 URI로 대표되는 개체(entity)에 해당되는 것을 탐지하는 것이다. 이 문제는 두 개의 작은 문제를 순차적으로 해결하는 과제이다. 즉, 첫째는 어느 단어열이 URI에 해당하는 개체인가를 인식하는 것이고, 둘째는 개체 중의성 해소 문제로서 파악된 개체가 복수의 URI에 해당할 수 있는 의미적 모호성이 있을 때 그 URI중 하나를 선택하여 모호성을 해소하는 것이다. 이 논문은 디비피디아 URI를 대상으로 한다. URI 탐지 문제는 개체명 인식 문제와 비슷하나, URI(예를 들어 디비피디아 URI, 즉 Wikipedia 등재어)에 매핑될 수 있는 개체로 한정되므로 일반적인 개체명 인식 문제에서 단어열의 품사열이 기계학습의 자질로 들어가는 방법론과는 다른 자질을 사용할 수 있다. 이 논문에서는 한국어 텍스트를 대상으로 한국어 디비피디아 URI 탐지문제로서 SVM을 이용한 개체경계 인식 방법을 제시하여, 일반적 개체명 인식에서 나타나는 품사태거의 오류파급효과를 없애고자 한다. 또한 개체중의성 해소 문제는 의미모호성이 주변 문장들의 토픽에 따라 달라지므로, LDA를 활용하며 이를 영어 디비피디아 URI탐지에서 쓰인 방법들과 비교한다.
본 논문에서는 한국어 명사의 중의성 해소를 위해, 원시 말뭉치로부터 얻을 수 있는 지식원으로서 국소문맥을 정의하고 추출하는 방법을 제시한다. 동일한 국소 문맥을 갖는 서로 다른 명사는 그 의미가 유사하다는 직관을 바탕으로 대상 명사의 중의성 해소를 위해 대상명사를 포함하는 국소문맥과 동일한 국소문맥을 갖는 단어를 단서로 사용함으로써 학습 자료의 활용도를 높일 수 있고 빈도수가 적은 단어의 의미 중의성도 해결할 수 있으며, 용언의 확장을 통해 자료 부족 현상을 줄일 수 있다. 대상 명사는 동일한 국소문맥에 의한 단서들과의 최대 유사도 계산을 통해 그 의미가 결정된다. 두 단어간의 유사도는 WordNet으로부터 차용한 의미 계층 구조에서 두 단어가 가지는 개념 사이의 거리에 의해 계산된다. 최대 유사도를 계산하는 과정에서는 단서들의 중의성을 점차 줄여 나감으로써 유사도 계산의 속도를 향상시킬 수 있다. 대상 명사가 둘 이상의 국소문맥을 가질 때에는 각 국소문맥의 종류에 따른 가중치를 부여하여 국소문맥의 종류에 따른 의미제약의 차이를 구현하였다. 또 하나의 지식원으로서 사전 정의와 예문으로부터 공기정보를 얻고, 이를 국소문맥을 보완하기 위한 지식으로 사용하여 최선의 의미를 선택할 수 있도록 하였다. 실험을 통해, 제안하는 방법은 국소 문맥의 적용률이 높고, 공기 정보는 국소 문맥과 상호 보완적으로 사용되어 정확도를 높일 수 있음을 보였다. 본 방법을 실험한 결과, 사용된 단어의 의미 중의성이 크면서도, 기존의 의미 부착 말뭉치를 이용한 교사 학습 방식의 성능보다도 높은 정확도(89.8%)를 얻을 수 있었다.
기계 번역 시스템에서 품사 태거의 오류는 전체번역 정확률에 결정적인 영향을 미친다. 따라서 어휘 단계의 정보만으로는 중의성 해소가 불가능한 단어에 대해서는 중의성 해소에 충분한 정보를 얻을 수 있는 구문 분석이나 의미 분석 단계까지 완전한 중의성 해소를 유보하는 N-best 품사 태거가 요구된다. 또한 N-best 품사 태거는 단어에 할당되는 평균 품사 개수를 최소화함으로써 상위 단계의 부하를 줄이는 본연의 역할을 수행하여야 한다. 본 논문은 통계 기반 품사 태깅 방법을 이용하여 N-best 후보를 선정하고, 선정된 N-best 후보에 언어 규칙을 적용하여 중의성을 감소시키거나 오류를 보정하는 혼합형 N-best 품사 태깅 방법을 제안한다 제안된 N-best 품사 태거는 6만여 단어의 영어 코퍼스에서 실험한 결과, 단어 당 평균 1.09개의 품사를 할당할 때 0.43%의 오류율을 보인다.
동형이의어는 여러 가지 의미를 가진 단어를 의미한다. 문장의 의미를 이해하기 위해서는 필수적으로 문장에 포함된 동형이의어의 의미를 결정해야 한다. 기존의 단어 의미 중의성 연구들은 공기 빈도를 기반으로 해결하였다. 하지만, 동사의 경우에는 정확도 향상을 위해서 격 정보가 중요하다. 왜냐하면, 동사 동형이의어의 의미는 행위의 주체나 객체에 따라 결정되어서 종속격(목적격, 부사격, 보격) 정보가 필요하며, 동사동형이의어 의미마다 서로 다른 격 정보가 필요하기 때문이다. 본 논문에서는 한국어 격 정보를 적용한 동사 의미 중의성 해소를 제안한다. 격정보는 표준국어대사전에 명시된 조사 정보를 이용하였다. 실험은 고빈도 동형이의어 12개를 대상으로 하였으며, 실험결과 정확도가 기존의 97.3%에서 98.7%로 1.34% 향상되었다. 이는 원래의 오류율을 2.7%에서 1.3%으로 절반정도 줄였다.
진료 기록 문서(CDA)가 의사들에 의해 작성되기 때문에 많은 전문용어, 약어, 숫자, 기호 등을 포함하고 있다. 본 논문에서는 이러한 특성을 고려하여 문서 내에서 여러 의미로 해석될 수 있는 약어, 중의어 등의 단어 모호성을 해소하고자 의미적 등가 부류를 이용하여 모호성을 해소하였다. 특히 의료문서가 많은 비율의 숫자, 기호를 사용하고 있고 문서 내에서 많은 의미적 유의성을 포함하고 있기 때문에 이들을 불용어로 처리하지 않고 의미적 등가 부류에 포함시킴으로써 진료문서 특성을 반영하였다.
본 논문은 온톨로지의 지식을 확장하기 위하여 웹 페이지 등 텍스트에서 추출된 온톨로지 개체(ontology instances)를 일반화하는 방법을 제시한다. 이를 위해서는 단어 의미 중의성 해소 과정이 필수적인데, 구글, 워드넷과 같은 오픈 API와 어휘 리소스를 이용하여 비교사학습 방법으로 해결하는 방법을 제안한다. 실험 결과 기존 연구에 비해 15.8%의 성능 향상을 얻을 수 있었다.
의미 모호성 해소는 문맥상의 한 단어의 올바른 의미를 밝히는 것으로, 대부분의 자연언어처리 응용에서 가장 중요한 문제 중 하나이다. 말뭉치로부터 얻어진 예제로부터 의미 모호성 해소 방법을 학습하기 위해서는 답이 알려져 있는 대량의 학습 예제가 필요하지만, 답이 알려져 있는 예제를 구하는 일은 사람의 간섭을 필요로 하므로 매우 비싼 작업이다. 본 논문에서는 답이 알려져 있는 학습 예제로 어느 정도 학습한 수, 답이 알려져 있지 않은 예제로 학습을 보충하는 방법을 통해 사람의 간섭을 최소화하였다. 결정트리 학습을 통한 한국어 명사에 대한 의미 결정 실험 결과, 본 논문에서 제안한 방법은 가장 많은 분포를 보이는 의미를 선택하는 경우보다 평균적으로 33.6%의 성능 향상을 보이며, 이는 전체 학습 예제의 답이 모두 알려져 있는 경우와 거의 비슷한 결과이다. 따라서, 한국어와 같이 신뢰할 만한 의미 부착 말뭉치가 없는 경우에 본 논문에서 제시된 방법은 매우 효율적이다.
이 연구에서는 수작업 태깅없이 기계가독형 사전을 이용하여 자동으로 의미를 태깅한 후 학습데이터로 구축한 분류기에 대해 의미를 분류하는 단어 중의성 해소 모형을 제시하였다. 자동 태깅을 위해 사전 추출 정보 기반방법과 연어 공기 기반 방법을 적용하였다. 실험 결과, 자동 태깅에서는 복수 자질 축소를 적용한 사전 추출 정보 기반 방법이 70.06%의 태깅 정확도를 보여 연어 공기 기반 방법의 56.33% 보다 24.37% 향상된 성능을 가져왔다. 사전 추출 정보 기반 방법을 이용한 분류기의 분류 정학도는 68.11%로서 연어 공기 기반 방법의 62.09% 보다 9.7% 향상된 성능을 보였다. 또한 두 자동 태깅 방법을 결합한 결과 태깅 정확도는 76.09%, 분류 정확도는 76.16%로 나타났다.
사전 뜻풀이에서 추출된 기존의 의미정보는 동형이의어가 포함된 뜻풀이에서 명사, 용언을 모두 추출하는 방법을 이용하여 단어 중의성 해소에 부적절만 정보를 상당수 포함하게 되었다. 이러만 부적절한 정보 때문에 오분석이나 과분석이 발생하게 된다. 그러므로 기존의 의미정보에서 동형이의어 분별에 유용한 정보만을 선택하는 기준이 필요하게 되었다. 본 논문에서는 사전 뜻풀이에서 동형이의어와 의미정보 사이의 상호정보량을 계산하고 임계치를 선정하여 의미정보를 선택제약하는 방법을 이용하였다. 임계치에 의해 제한된 의미정보의 효율성을 실험하기 위한 다양만 동형이의어 분별 실험들을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.