• Title/Summary/Keyword: 단어 의미 벡터

Search Result 91, Processing Time 0.024 seconds

Word Sense Classification Using Support Vector Machines (지지벡터기계를 이용한 단어 의미 분류)

  • Park, Jun Hyeok;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.563-568
    • /
    • 2016
  • The word sense disambiguation problem is to find the correct sense of an ambiguous word having multiple senses in a dictionary in a sentence. We regard this problem as a multi-class classification problem and classify the ambiguous word by using Support Vector Machines. Context words of the ambiguous word, which are extracted from Sejong sense tagged corpus, are represented to two kinds of vector space. One vector space is composed of context words vectors having binary weights. The other vector space has vectors where the context words are mapped by word embedding model. After experiments, we acquired accuracy of 87.0% with context word vectors and 86.0% with word embedding model.

Korean Word Sense Disambiguation Using BERT (BERT를 이용한 한국어 단어 의미 모호성 해소)

  • Youn, Jun Young;Shin, Hyeong Jin;Park, Jeong Yeon;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.485-487
    • /
    • 2019
  • 단어의 의미 모호성을 해결하기 위한 연구는 오랫동안 지속되어 왔으며, 특히 최근에는 단어 벡터를 이용한 연구가 활발하게 이루어져왔다. 본 논문에서는 문맥 기반 단어 벡터인 BERT를 이용하여 한국어 단어 의미 모호성을 해소하기 위한 방법을 제안하고, 그 실험 결과를 기존의 한국어 단어 의미 모호성 연구 결과와 비교한다.

  • PDF

Word Sense Disambiguation using Semantically Similar Words (유사어를 이용한 단어 의미 중의성 해결)

  • Seo, Hee-Chul;Lee, Ho;Baek, Dae-Ho;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.304-309
    • /
    • 1999
  • 본 논문에서는 의미계층구조에 나타난 유사어 정보를 이용해서 단어 의미 중의성을 해결하고자 한다. 의미계층구조를 이용한 기존의 방법에서는 의미 벡터를 이용해서 단어 의미 중의성을 해결했다. 의미 벡터는 의미별 학습 자료에서 획득되는 것으로 유사어들의 공통적인 특징만을 이용하고, 유사어 개별 특징은 이용하지 않는다. 본 논문에서는 유사어 개별 특징을 이용하기 위해서 유사어 벡터를 이용해서 단어 의미 중의성을 해결한다. 유사어 벡터는 유사어별 학습 자료에서 획득되는 것으로, 유사어의 개별 정보를 가지고 있는 벡터이다. 세 개의 한국어 명사에 대한 실험 결과, 의미 벡터를 이용하는 것보다 유사어 벡터를 이용하는 경우에 평균 9.5%정도의 성능향상이 있었다.

  • PDF

Word Sense Disambiguation of Korean Verbs Using Weight Information from Context (가중치 정보를 이용한 한국어 동사의 의미 중의성 해소)

  • Lim, Soo-Jong;Park, Young-Ja;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.425-429
    • /
    • 1998
  • 본 논문은 문맥에서 추출한 가중치 정보를 이용한 한국어 동사의 의미 중의성 해소 모델을 제안한다. 중의성이 있는 단어가 쓰인 문장에서 그 단어의 의미 결정에 영향을 주는 단어들로 의미 결정자 벡터를 구성하고, 사전에서 그 단어의 의미 항목에 쓰인 단어들로 의미 항목 벡터를 구성한다. 목적 단어의 의미는 두 벡터간의 유사도 계산에 의해 결정된다. 벡터간의 유사도 계산은 사전에서 추출된 공기 관계와 목적 단어가 속한 문장에서 추출한 거리와 품사정보에 기반한 가중치 정보를 이용하여 이루어진다. 4개의 한국어 동사에 대해 내부실험과 외부실험을 하였다. 내부 실험은 84%의 정확률과 baseline을 기준으로 50%의 성능향상, 외부 실험은 75%의 정확률과 baseline을 기준으로 40 %의 성능향상을 보인다.

  • PDF

On Characteristics of Word Embeddings by the Word2vec Model (Word2vec 모델의 단어 임베딩 특성 연구)

  • Kang, Hyungsuc;Yang, Janghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.263-266
    • /
    • 2019
  • 단어 임베딩 모델 중 현재 널리 사용되는 word2vec 모델은 언어의 의미론적 유사성을 잘 반영한다고 알려져 있다. 본 논문은 word2vec 모델로 학습된 단어 벡터가 실제로 의미론적 유사성을 얼마나 잘 반영하는지 확인하는 것을 목표로 한다. 즉, 유사한 범주의 단어들이 벡터 공간상에 가까이 임베딩되는지 그리고 서로 구별되는 범주의 단어들이 뚜렷이 구분되어 임베딩되는지를 확인하는 것이다. 간단한 군집화 알고리즘을 통한 검증의 결과, 상식적인 언어 지식과 달리 특정 범주의 단어들은 임베딩된 벡터 공간에서 뚜렷이 구분되지 않음을 확인했다. 결론적으로, 단어 벡터들의 유사도가 항상 해당 단어들의 의미론적 유사도를 의미하지는 않는다. Word2vec 모델의 결과를 응용하는 향후 연구에서는 이런 한계점에 고려가 요청된다.

Word Sense Disambiguation Using Word Link and Word Cooccurrence (단어링크와 공기 단어를 이용한 의미중의성 해소)

  • 구영석;나동렬
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.21-27
    • /
    • 2002
  • 본 논문은 문장 안에서 의미 중의성을 갖는 단어가 출현했을 때 그 단어가 어떤 의미로 사용되고 있는지 판별해 주는 방법을 제시하고자 한다. 이를 위해서 먼저 중의적 의미를 가지는 단어의 각 의미 (sense) 마다에 대하여 이 의미를 나타내는 주요단어 즉 종자단어와 연관성이 있는 단어들로 벡터를 구성하여 이 의미를 나타내고자 한다. 종자단어와 말뭉치의 문장을 통하여 연결된 경로를 가진 단어는 이 종자단어에 해당하는 의미를 나타내는 데 기여하는 정보로 본 것이다. 경로는 동일 문장에서 나타나는 두 단어 사이는 링크가 있다고 보고 이러한 링크를 통하여 이루어 질 수 있는 연결 관계를 나타낸다. 이 기법의 장점은 데이터 부족으로 야기되는 문제를 경감시킬 수 있다는 점이다. 실험을 위해 Hantec 품사 부착된 말뭉치를 이용하여 의미정보벡터를 구축하였으며 ETRI 품사 부착된 말뭉치에서 중의적 단어가 포함된 문장을 추출하여 실시하였다. 실험 결과 기존의 방법보다 나은 성능을 보임이 밝혀졌다.

  • PDF

Assignment Semantic Category of a Word using Word Embedding and Synonyms (워드 임베딩과 유의어를 활용한 단어 의미 범주 할당)

  • Park, Da-Sol;Cha, Jeong-Won
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.946-953
    • /
    • 2017
  • Semantic Role Decision defines the semantic relationship between the predicate and the arguments in natural language processing (NLP) tasks. The semantic role information and semantic category information should be used to make Semantic Role Decisions. The Sejong Electronic Dictionary contains frame information that is used to determine the semantic roles. In this paper, we propose a method to extend the Sejong electronic dictionary using word embedding and synonyms. The same experiment is performed using existing word-embedding and retrofitting vectors. The system performance of the semantic category assignment is 32.19%, and the system performance of the extended semantic category assignment is 51.14% for words that do not appear in the Sejong electronic dictionary of the word using the word embedding. The system performance of the semantic category assignment is 33.33%, and the system performance of the extended semantic category assignment is 53.88% for words that do not appear in the Sejong electronic dictionary of the vector using retrofitting. We also prove it is helpful to extend the semantic category word of the Sejong electronic dictionary by assigning the semantic categories to new words that do not have assigned semantic categories.

Modified multi-sense skip-gram using weighted context and x-means (가중 문맥벡터와 X-means 방법을 이용한 변형 다의어스킵그램)

  • Jeong, Hyunwoo;Lee, Eun Ryung
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.389-399
    • /
    • 2021
  • In recent years, word embedding has been a popular field of natural language processing research and a skip-gram has become one successful word embedding method. It assigns a word embedding vector to each word using contexts, which provides an effective way to analyze text data. However, due to the limitation of vector space model, primary word embedding methods assume that every word only have a single meaning. As one faces multi-sense words, that is, words with more than one meaning, in reality, Neelakantan (2014) proposed a multi-sense skip-gram (MSSG) to find embedding vectors corresponding to the each senses of a multi-sense word using a clustering method. In this paper, we propose a modified method of the MSSG to improve statistical accuracy. Moreover, we propose a data-adaptive choice of the number of clusters, that is, the number of meanings for a multi-sense word. Some numerical evidence is given by conducting real data-based simulations.

A Word Embedding used Word Sense and Feature Mirror Model (단어 의미와 자질 거울 모델을 이용한 단어 임베딩)

  • Lee, JuSang;Shin, JoonChoul;Ock, CheolYoung
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • Word representation, an important area in natural language processing(NLP) used machine learning, is a method that represents a word not by text but by distinguishable symbol. Existing word embedding employed a large number of corpora to ensure that words are positioned nearby within text. However corpus-based word embedding needs several corpora because of the frequency of word occurrence and increased number of words. In this paper word embedding is done using dictionary definitions and semantic relationship information(hypernyms and antonyms). Words are trained using the feature mirror model(FMM), a modified Skip-Gram(Word2Vec). Sense similar words have similar vector. Furthermore, it was possible to distinguish vectors of antonym words.

Word Sense Disambiguation using Korean Word Space Model (한국어 단어 공간 모델을 이용한 단어 의미 중의성 해소)

  • Park, Yong-Min;Lee, Jae-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.41-47
    • /
    • 2012
  • Various Korean word sense disambiguation methods have been proposed using small scale of sense-tagged corpra and dictionary definitions to calculate entropy information, conditional probability, mutual information and etc. for each method. This paper proposes a method using Korean Word Space model which builds word vectors from a large scale of sense-tagged corpus and disambiguates word senses with the similarity calculation between the word vectors. Experiment with Sejong morph sense-tagged corpus showed 94% precision for 200 sentences(583 word types), which is much superior to the other known methods.