• 제목/요약/키워드: 단어 오류

검색결과 213건 처리시간 0.025초

FAQ 분류 성능 향상을 위한 클래스 일치 여부 결합 학습 모델 (Jointly learning class coincidence classification for FAQ classification)

  • 양동일;함진아;이강욱;이지연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.12-17
    • /
    • 2019
  • FAQ(Frequently Asked Questions) 질의 응답 시스템은 자주 묻는 질문과 답변을 정의하고, 사용자 질의에 대해 정의된 답변 중 가장 알맞는 답변을 추론하여 제공하는 시스템이다. 정의된 대표 질문 및 대응하는 답변을 클래스(Class)라고 했을 때, FAQ 질의 응답 시스템은 분류(Classification) 문제라고 할 수 있다. 종래의 FAQ 분류는 동일 클래스 내 동의 문장(Paraphrase)에서 나타나는 공통적인 특징을 통해 분류 문제를 학습하였으나, 이는 비슷한 단어 구성을 가지면서 한 두 개의 단어에 의해 의미가 다른 문장의 차이를 구분하지 못하며, 특히 서로 다른 클래스에 속한 학습 데이터 간에 비슷한 의미를 가지는 문장이 존재할 때 클래스 분류에 오류가 발생하기 쉬운 문제점을 가지고 있다. 본 논문에서는 이 문제점을 해결하고자 서로 다른 클래스 내의 학습 데이터 문장들이 상이한 클래스임을 구분할 수 있도록 클래스 일치 여부(Class coincidence classification) 문제를 결합 학습(Jointly learning)하는 기법을 제안한다. 동일 클래스 내 학습 문장의 무작위 쌍(Pair)을 생성 및 학습하여 해당 쌍이 같은 클래스에 속한다는 것을 학습하게 하면서, 동시에 서로 다른 클래스 간 학습 문장의 무작위 쌍을 생성 및 학습하여 해당 쌍은 상이한 클래스임을 구분해 내는 능력을 함께 학습하도록 유도하였다. 실험을 위해서는 최근 발표되어 자연어 처리 분야에서 가장 좋은 성능을 보이고 있는 BERT 의 텍스트 분류 모델을 이용했으며, 제안한 기법을 적용한 모델과의 성능 비교를 위해 한국어 FAQ 데이터를 기반으로 실험을 진행했다. 실험 결과, 분류 문제만 단독으로 학습한 BERT 기본 모델보다 본 연구에서 제안한 클래스 일치 여부 결합 학습 모델이 유사한 문장들 간의 차이를 구분하며 유의미한 성능 향상을 보인다는 것을 확인할 수 있었다.

  • PDF

마코프 체인 밀 음절 N-그램을 이용한 한국어 띄어쓰기 및 복합명사 분리 (Korean Word Segmentation and Compound-noun Decomposition Using Markov Chain and Syllable N-gram)

  • 권오욱
    • 한국음향학회지
    • /
    • 제21권3호
    • /
    • pp.274-284
    • /
    • 2002
  • 한국어 대어휘 연속음성인식을 위한 텍스트 전처리에서 띄어쓰기 오류는 잘못된 단어를 인식 어휘에 포함시켜 언어모델의 성능을 저하시킨다. 본 논문에서는 텍스트 코퍼스의 띄어쓰기 교정을 위하여 한국어 음절 N-그램을 이용한 자동 띄어쓰기 알고리듬을 제시한다. 제시된 알고리듬에서는 주어진 입력음절열은 좌에서 우로의 천이만을 갖는 마코프 체인으로 표시되고 어떤 상태에서 같은 상태로의 천이에서 공백음절이 발생하며 다른 상태로의 천이에서는 주어진 음절이 발생한다고 가정한다. 마코프 체인에서 음절 단위 N-그램 언어모델에 의한 문장 확률이 가장 높은 경로를 찾음으로써 띄어쓰기 결과를 얻는다. 모든 공백을 삭제한 254문장으로 이루어진 신문 칼럼 말뭉치에 대하여 띄어쓰기 알고리듬을 적용한 결과 91.58%의 어절단위 정확도 및 96.69%의 음절 정확도를 나타내었다. 띄어쓰기 알고리듬을 응용한 줄바꿈에서의 공백 오류 처리에서 이 알고리듬은 91.00%에서 96.27%로 어절 정확도를 향상시켰으며, 복합명사 분리에서는 96.22%의 분리 정확도를 보였다.

저자원 환경의 음성인식을 위한 자기 주의를 활용한 음향 모델 학습 (Acoustic model training using self-attention for low-resource speech recognition)

  • 박호성;김지환
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.483-489
    • /
    • 2020
  • 본 논문에서는 저자원 환경의 음성인식에서 음향 모델의 성능을 높이기 위한 음향 모델 학습 방법을 제안한다. 저자원 환경이란, 음향 모델에서 100시간 미만의 학습 자료를 사용한 환경을 말한다. 저자원 환경의 음성인식에서는 음향 모델이 유사한 발음들을 잘 구분하지 못하는 문제가 발생한다. 예를 들면, 파열음 /d/와 /t/, 파열음 /g/와 /k/, 파찰음 /z/와 /ch/ 등의 발음은 저자원 환경에서 잘 구분하지 못한다. 자기 주의 메커니즘은 깊은 신경망 모델로부터 출력된 벡터에 대해 가중치를 부여하며, 이를 통해 저자원 환경에서 발생할 수 있는 유사한 발음 오류 문제를 해결한다. 음향 모델에서 좋은 성능을 보이는 Time Delay Neural Network(TDNN)과 Output gate Projected Gated Recurrent Unit(OPGRU)의 혼합 모델에 자기 주의 기반 학습 방법을 적용했을 때, 51.6 h 분량의 학습 자료를 사용한 한국어 음향 모델에 대하여 단어 오류율 기준 5.98 %의 성능을 보여 기존 기술 대비 0.74 %의 절대적 성능 개선을 보였다.

문자메시지의 특성을 고려한 한국어 모바일 스팸필터링 시스템 (Korean Mobile Spam Filtering System Considering Characteristics of Text Messages)

  • 손대능;이정태;이승욱;신중휘;임해창
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2595-2602
    • /
    • 2010
  • 본 논문에서는 휴대전화로 오는 짧은 문자메시지의 스타일을 반영하여 스팸 문자메시지를 검출해내는 한국어 모바일 스팸필터링 시스템을 소개한다. 제안하는 시스템은 내용어 어휘들의 출현에만 기반을 두는 기존 방법과 달리 제안하는 스타일 정보를 추가적으로 활용하여 스팸성 단어가 포함된 일반 문자메시지가 스팸으로 잘못 분류되는 치명적인 오류를 효과적으로 줄인다. 또한 띄어쓰기 및 철자 오류교정을 거쳐 문자메시지를 정규화 함으로써 스팸 분류성능을 향상시킨다. 실제 한국어 문자메시지를 이용한 실험 결과를 통해 제안하는 시스템이 한국어 스팸 문자메시지 검출에 효과적임을 보인다.

웹기반 언어 학습시스템을 위한 한국어 철자/문법 검사기의 성능 향상 (Improving a Korean Spell/Grammar Checker for the Web-Based Language Learning System)

  • 남현숙;김광영;권혁철
    • 인지과학
    • /
    • 제12권3호
    • /
    • pp.1-18
    • /
    • 2001
  • 이 논문의 목적은 한국어 철자/문법 검사기를 교육적으로 활용한 웹 기반 국어 작문 학습 시스템의 구현이다. 웹 기반 학습시스템 \\`우리말 배움터\\`의 학습효과를 최대화하려면 한국어 철자/문법 검사기의 성능을 꾸준히 향상해야 한다 오늘날 자연어처리 시스템의 성능은 의미처리를 얼마나 정확하게 수행하는가에 달려있다 한국어 철자/문법 검사기에서 의미처리와 관련이 있는 부분은 철자 검사기에서 접사나 꼬리말과 파생하는 단어와 복합명사를 교정하는 처리기와 의미·문체 오류를 교정하는 문법 검사기이다. 본 시스템에서는 의미처리를 위하여 의존문법에 기반하여 부분문장분석과 연어관계정보를 이용한다. 여기에 더 세부적인 규칙을 추가하기 위해 단어를 개념적으로 분류하고 문장의 핵심요소인 동사를 하위범주화한 결과를 적용한다. 의미처리 기능을 강화한 철자/문법 검사기를 온라인으로 운영함으로써 웹에 기반한 한국어 학습시tm템과 통합된 환경에서 능동적이고 지능적인 학습 모형을 구현한다. 이 논문에서 다루는 의미처리의 대상은 주로 구문 단위이기 때문에 여러 개의 절이 모여 하나의 문장이 된 복문이나 중문은 다루지 못하고 있다. 또한 일률적인 체계 속에서 단어를 의미적으로 분류하는 데에도 많은 한계가 있다. 한편 이러한 자연어처리시스템을 웹 기반 학습시스템에 연결하여 효율적인 학습효과를 거두려면 학습내용 구성이나 인터페이스 설계 면에서도 고려해야 할 중요한 문제가 많다. 결론에서는 아직 완전하게 해결하지 못한 문제에 대해 고찰한다.

  • PDF

한국어 음성인식 플랫폼 (ECHOS) 개발 (Development of a Korean Speech Recognition Platform (ECHOS))

  • 권오욱;권석봉;장규철;윤성락;김용래;장광동;김회린;유창동;김봉완;이용주
    • 한국음향학회지
    • /
    • 제24권8호
    • /
    • pp.498-504
    • /
    • 2005
  • 교육 및 연구 목적을 위하여 개발된 한국어 음성인식 플랫폼인 ECHOS를 소개한다. 음성인식을 위한 기본 모듈을 제공하는 BCHOS는 이해하기 쉽고 간단한 객체지향 구조를 가지며, 표준 템플릿 라이브러리 (STL)를 이용한 C++ 언어로 구현되었다. 입력은 8또는 16 kHz로 샘플링된 디지털 음성 데이터이며. 출력은 1-beat 인식결과, N-best 인식결과 및 word graph이다. ECHOS는 MFCC와 PLP 특징추출, HMM에 기반한 음향모델, n-gram 언어모델, 유한상태망 (FSN)과 렉시컬트리를 지원하는 탐색알고리듬으로 구성되며, 고립단어인식으로부터 대어휘 연속음성인식에 이르는 다양한 태스크를 처리할 수 있다. 플랫폼의 동작을 검증하기 위하여 ECHOS와 hidden Markov model toolkit (HTK)의 성능을 비교한다. ECHOS는 FSN 명령어 인식 태스크에서 HTK와 거의 비슷한 인식률을 나타내고 인식시간은 객체지향 구현 때문에 약 2배 정도 증가한다. 8000단어 연속음성인식에서는 HTK와 달리 렉시컬트리 탐색 알고리듬을 사용함으로써 단어오류율은 $40\%$ 증가하나 인식시간은 0.5배로 감소한다.

글씨쓰기 명료도 평가의 정량적 영상처리 분석 (Quantitative image processing analysis for handwriting legibility evaluation)

  • 김은빈;이초희;김은영;이언석
    • 한국산학기술학회논문지
    • /
    • 제20권7호
    • /
    • pp.158-165
    • /
    • 2019
  • 선수능력의 발달 미흡과 신경학적 손상으로 인해 나타나는 쓰기 장애는 의미전달의 혼동을 줄 수 있고 가독성이 떨어지며 학습, 사회정서 문제 유발 가능성이 높다. 이에 문제 파악과 적시 개입을 위한 평가가 요구되고 있지만 임상에서는 수기에 의한 채점 방식을 채택하며 주관적인 평가에 따른 오류 가능성이 발생한다. 본 연구는 성인의 오프라인 필기체 문자를 영상처리를 통해 글자의 크기비율, 위치를 데이터화 하고 정량화 하며 수기 채점방식과의 비교, 분석을 통해 보다 객관적이고 정확하게 쓰기 수행을 평가하고자 하였다. 2018년 11월 12일부터 16일까지 신경학적 손상이 없는 성인 20명을 채택하여 10단어, 2 문장 자극을 평소 쓰기 습관을 유지한 후 연필을 사용해 따라 쓰며 쓰기 검사 데이터를 수집하였다. 본 연구에서 개발한 글씨 측정 알고리즘 결과 단어의 높이가 폭에 비해 1.2배 정도 크고 왼쪽 아래로 치우치는 경향을 보였으며 평균 9mm의 간격을 두고 띄어 썼다. Paired T test를 통한 수기와 본 시스템의 분석결과, 단어 검사와 문장 2의 검사는 고도의 상관관계를 보여 추후 검사 도구로써의 가능성을 보였다. 본 연구는 성인의 오프라인 필기체 문자를 영상처리를 통해 보다 객관적이고 정확하게 쓰기 수행을 평가하였으며 수행 규준을 위한 예비자료를 제공하였다. 향후 다양한 연령대의 쓰기 진단의 기초 자료로 제시될 수 있으며 아동의 경우 쓰기 장애 개입에 깊이 있게 활용될 수 있을 것이다.

언어 모델 다중 학습을 이용한 한국어 개체명 인식 (Korean Named Entity Recognition using Joint Learning with Language Model)

  • 김병재;박찬민;최윤영;권명준;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.333-337
    • /
    • 2017
  • 본 논문에서는 개체명 인식과 언어 모델의 다중 학습을 이용한 한국어 개체명 인식 방법을 제안한다. 다중 학습은 1 개의 모델에서 2 개 이상의 작업을 동시에 분석하여 성능 향상을 기대할 수 있는 방법이지만, 이를 적용하기 위해서 말뭉치에 각 작업에 해당하는 태그가 부착되어야 하는 문제가 있다. 본 논문에서는 추가적인 태그 부착 없이 정보를 획득할 수 있는 언어 모델을 개체명 인식 작업과 결합하여 성능 향상을 이루고자 한다. 또한 단순한 형태소 입력의 한계를 극복하기 위해 입력 표상을 자소 및 형태소 품사의 임베딩으로 확장하였다. 기계 학습 방법은 순차적 레이블링에서 높은 성능을 제공하는 Bi-directional LSTM CRF 모델을 사용하였고, 실험 결과 언어 모델이 개체명 인식의 오류를 효과적으로 개선함을 확인하였다.

  • PDF

음성인식에서 화자 내 정규화를 위한 진폭 변경 방법 (An Amplitude Warping Approach to Intra-Speaker Normalization for Speech Recognition)

  • 김동현;홍광석
    • 인터넷정보학회논문지
    • /
    • 제4권3호
    • /
    • pp.9-14
    • /
    • 2003
  • 기존의 성도 정규화 방법은 화자 간 정규화의 정확성을 개선하기 위한 매우 좋은 방법이다. 본 논문에서는 피치 변경 발성에 기반을 둔 새로운 화자 내 warping 인수 추정 방법을 제안한다. 화자 내 피치 변경 발성은 성문과 성도에 의해 발생되는 음성의 음향학적 차이 때문에 음성의 특징 공간 분포는 다르게 나타날 것이다. 발성의 변동은 frequency 성분과 amplitude 성분의 두가지 유형이 있다. 성도 정규화는 화자 간 정규화 방법들 중에서 주파수 정규화 방법이다. 여기에서는 화자 내 정규화를 위하여 진폭 변동을 정규화하는 방법을 제안한다. 참조 피치와 입력 피치의 역비례 계산에 의해서 진폭 warping 인수를 결정하는 것이 가능하다. 성능 평가를 위한 인식 실험 결과 숫자와 단어 인식에서 0.4%∼2.3% 정도의 인식 오류가 감소되었다.

  • PDF

웹기반 정보검색을 위한 자연어 키워드 색인에 관한 연구 (A Study on Natural Language Keyword Indexing for Web-based Information Retrieval)

  • 윤성희
    • 한국컴퓨터산업학회논문지
    • /
    • 제4권12호
    • /
    • pp.1103-1111
    • /
    • 2003
  • 정보검색의 방법으로 단일 주제어를 키워드로 색인하여 검색하는 방식이 널리 사용되어 왔으나 문서의 내용을 정확히 표현하기 어렵고 검색 결과의 문서 집합 또한 너무 커서 사용자의 만족도가 낮다. 본 논문에서는 자연언어 처리 기술인 구문 분석 모듈을 도입해 단어 이상의 단위인 구 단위를 색인과 검색의 단위로 삼는 구 단위 색인 및 검색 기법을 사용을 제안한다. 웹 문서들 자체가 갖는 다양한 오류들로 인해 현실적으로 충분히 만족할 만할 우수한 성능의 구문 분석 모듈이 구현되기는 어려우므로 상향식 구문 분석 모듈을 구현하여 완전한 구문 분석 결과를 얻지 못하는 많은 문장에 대해서도 구 단위 색인이 가능하며 단일어 색인보다 식별력이 뛰어나 검색 성능이 향상되고 검색 과정의 부하도 줄일수 있다.

  • PDF