FAQ(Frequently Asked Questions) 질의 응답 시스템은 자주 묻는 질문과 답변을 정의하고, 사용자 질의에 대해 정의된 답변 중 가장 알맞는 답변을 추론하여 제공하는 시스템이다. 정의된 대표 질문 및 대응하는 답변을 클래스(Class)라고 했을 때, FAQ 질의 응답 시스템은 분류(Classification) 문제라고 할 수 있다. 종래의 FAQ 분류는 동일 클래스 내 동의 문장(Paraphrase)에서 나타나는 공통적인 특징을 통해 분류 문제를 학습하였으나, 이는 비슷한 단어 구성을 가지면서 한 두 개의 단어에 의해 의미가 다른 문장의 차이를 구분하지 못하며, 특히 서로 다른 클래스에 속한 학습 데이터 간에 비슷한 의미를 가지는 문장이 존재할 때 클래스 분류에 오류가 발생하기 쉬운 문제점을 가지고 있다. 본 논문에서는 이 문제점을 해결하고자 서로 다른 클래스 내의 학습 데이터 문장들이 상이한 클래스임을 구분할 수 있도록 클래스 일치 여부(Class coincidence classification) 문제를 결합 학습(Jointly learning)하는 기법을 제안한다. 동일 클래스 내 학습 문장의 무작위 쌍(Pair)을 생성 및 학습하여 해당 쌍이 같은 클래스에 속한다는 것을 학습하게 하면서, 동시에 서로 다른 클래스 간 학습 문장의 무작위 쌍을 생성 및 학습하여 해당 쌍은 상이한 클래스임을 구분해 내는 능력을 함께 학습하도록 유도하였다. 실험을 위해서는 최근 발표되어 자연어 처리 분야에서 가장 좋은 성능을 보이고 있는 BERT 의 텍스트 분류 모델을 이용했으며, 제안한 기법을 적용한 모델과의 성능 비교를 위해 한국어 FAQ 데이터를 기반으로 실험을 진행했다. 실험 결과, 분류 문제만 단독으로 학습한 BERT 기본 모델보다 본 연구에서 제안한 클래스 일치 여부 결합 학습 모델이 유사한 문장들 간의 차이를 구분하며 유의미한 성능 향상을 보인다는 것을 확인할 수 있었다.
한국어 대어휘 연속음성인식을 위한 텍스트 전처리에서 띄어쓰기 오류는 잘못된 단어를 인식 어휘에 포함시켜 언어모델의 성능을 저하시킨다. 본 논문에서는 텍스트 코퍼스의 띄어쓰기 교정을 위하여 한국어 음절 N-그램을 이용한 자동 띄어쓰기 알고리듬을 제시한다. 제시된 알고리듬에서는 주어진 입력음절열은 좌에서 우로의 천이만을 갖는 마코프 체인으로 표시되고 어떤 상태에서 같은 상태로의 천이에서 공백음절이 발생하며 다른 상태로의 천이에서는 주어진 음절이 발생한다고 가정한다. 마코프 체인에서 음절 단위 N-그램 언어모델에 의한 문장 확률이 가장 높은 경로를 찾음으로써 띄어쓰기 결과를 얻는다. 모든 공백을 삭제한 254문장으로 이루어진 신문 칼럼 말뭉치에 대하여 띄어쓰기 알고리듬을 적용한 결과 91.58%의 어절단위 정확도 및 96.69%의 음절 정확도를 나타내었다. 띄어쓰기 알고리듬을 응용한 줄바꿈에서의 공백 오류 처리에서 이 알고리듬은 91.00%에서 96.27%로 어절 정확도를 향상시켰으며, 복합명사 분리에서는 96.22%의 분리 정확도를 보였다.
본 논문에서는 저자원 환경의 음성인식에서 음향 모델의 성능을 높이기 위한 음향 모델 학습 방법을 제안한다. 저자원 환경이란, 음향 모델에서 100시간 미만의 학습 자료를 사용한 환경을 말한다. 저자원 환경의 음성인식에서는 음향 모델이 유사한 발음들을 잘 구분하지 못하는 문제가 발생한다. 예를 들면, 파열음 /d/와 /t/, 파열음 /g/와 /k/, 파찰음 /z/와 /ch/ 등의 발음은 저자원 환경에서 잘 구분하지 못한다. 자기 주의 메커니즘은 깊은 신경망 모델로부터 출력된 벡터에 대해 가중치를 부여하며, 이를 통해 저자원 환경에서 발생할 수 있는 유사한 발음 오류 문제를 해결한다. 음향 모델에서 좋은 성능을 보이는 Time Delay Neural Network(TDNN)과 Output gate Projected Gated Recurrent Unit(OPGRU)의 혼합 모델에 자기 주의 기반 학습 방법을 적용했을 때, 51.6 h 분량의 학습 자료를 사용한 한국어 음향 모델에 대하여 단어 오류율 기준 5.98 %의 성능을 보여 기존 기술 대비 0.74 %의 절대적 성능 개선을 보였다.
본 논문에서는 휴대전화로 오는 짧은 문자메시지의 스타일을 반영하여 스팸 문자메시지를 검출해내는 한국어 모바일 스팸필터링 시스템을 소개한다. 제안하는 시스템은 내용어 어휘들의 출현에만 기반을 두는 기존 방법과 달리 제안하는 스타일 정보를 추가적으로 활용하여 스팸성 단어가 포함된 일반 문자메시지가 스팸으로 잘못 분류되는 치명적인 오류를 효과적으로 줄인다. 또한 띄어쓰기 및 철자 오류교정을 거쳐 문자메시지를 정규화 함으로써 스팸 분류성능을 향상시킨다. 실제 한국어 문자메시지를 이용한 실험 결과를 통해 제안하는 시스템이 한국어 스팸 문자메시지 검출에 효과적임을 보인다.
이 논문의 목적은 한국어 철자/문법 검사기를 교육적으로 활용한 웹 기반 국어 작문 학습 시스템의 구현이다. 웹 기반 학습시스템 \\`우리말 배움터\\`의 학습효과를 최대화하려면 한국어 철자/문법 검사기의 성능을 꾸준히 향상해야 한다 오늘날 자연어처리 시스템의 성능은 의미처리를 얼마나 정확하게 수행하는가에 달려있다 한국어 철자/문법 검사기에서 의미처리와 관련이 있는 부분은 철자 검사기에서 접사나 꼬리말과 파생하는 단어와 복합명사를 교정하는 처리기와 의미·문체 오류를 교정하는 문법 검사기이다. 본 시스템에서는 의미처리를 위하여 의존문법에 기반하여 부분문장분석과 연어관계정보를 이용한다. 여기에 더 세부적인 규칙을 추가하기 위해 단어를 개념적으로 분류하고 문장의 핵심요소인 동사를 하위범주화한 결과를 적용한다. 의미처리 기능을 강화한 철자/문법 검사기를 온라인으로 운영함으로써 웹에 기반한 한국어 학습시tm템과 통합된 환경에서 능동적이고 지능적인 학습 모형을 구현한다. 이 논문에서 다루는 의미처리의 대상은 주로 구문 단위이기 때문에 여러 개의 절이 모여 하나의 문장이 된 복문이나 중문은 다루지 못하고 있다. 또한 일률적인 체계 속에서 단어를 의미적으로 분류하는 데에도 많은 한계가 있다. 한편 이러한 자연어처리시스템을 웹 기반 학습시스템에 연결하여 효율적인 학습효과를 거두려면 학습내용 구성이나 인터페이스 설계 면에서도 고려해야 할 중요한 문제가 많다. 결론에서는 아직 완전하게 해결하지 못한 문제에 대해 고찰한다.
교육 및 연구 목적을 위하여 개발된 한국어 음성인식 플랫폼인 ECHOS를 소개한다. 음성인식을 위한 기본 모듈을 제공하는 BCHOS는 이해하기 쉽고 간단한 객체지향 구조를 가지며, 표준 템플릿 라이브러리 (STL)를 이용한 C++ 언어로 구현되었다. 입력은 8또는 16 kHz로 샘플링된 디지털 음성 데이터이며. 출력은 1-beat 인식결과, N-best 인식결과 및 word graph이다. ECHOS는 MFCC와 PLP 특징추출, HMM에 기반한 음향모델, n-gram 언어모델, 유한상태망 (FSN)과 렉시컬트리를 지원하는 탐색알고리듬으로 구성되며, 고립단어인식으로부터 대어휘 연속음성인식에 이르는 다양한 태스크를 처리할 수 있다. 플랫폼의 동작을 검증하기 위하여 ECHOS와 hidden Markov model toolkit (HTK)의 성능을 비교한다. ECHOS는 FSN 명령어 인식 태스크에서 HTK와 거의 비슷한 인식률을 나타내고 인식시간은 객체지향 구현 때문에 약 2배 정도 증가한다. 8000단어 연속음성인식에서는 HTK와 달리 렉시컬트리 탐색 알고리듬을 사용함으로써 단어오류율은 $40\%$ 증가하나 인식시간은 0.5배로 감소한다.
선수능력의 발달 미흡과 신경학적 손상으로 인해 나타나는 쓰기 장애는 의미전달의 혼동을 줄 수 있고 가독성이 떨어지며 학습, 사회정서 문제 유발 가능성이 높다. 이에 문제 파악과 적시 개입을 위한 평가가 요구되고 있지만 임상에서는 수기에 의한 채점 방식을 채택하며 주관적인 평가에 따른 오류 가능성이 발생한다. 본 연구는 성인의 오프라인 필기체 문자를 영상처리를 통해 글자의 크기비율, 위치를 데이터화 하고 정량화 하며 수기 채점방식과의 비교, 분석을 통해 보다 객관적이고 정확하게 쓰기 수행을 평가하고자 하였다. 2018년 11월 12일부터 16일까지 신경학적 손상이 없는 성인 20명을 채택하여 10단어, 2 문장 자극을 평소 쓰기 습관을 유지한 후 연필을 사용해 따라 쓰며 쓰기 검사 데이터를 수집하였다. 본 연구에서 개발한 글씨 측정 알고리즘 결과 단어의 높이가 폭에 비해 1.2배 정도 크고 왼쪽 아래로 치우치는 경향을 보였으며 평균 9mm의 간격을 두고 띄어 썼다. Paired T test를 통한 수기와 본 시스템의 분석결과, 단어 검사와 문장 2의 검사는 고도의 상관관계를 보여 추후 검사 도구로써의 가능성을 보였다. 본 연구는 성인의 오프라인 필기체 문자를 영상처리를 통해 보다 객관적이고 정확하게 쓰기 수행을 평가하였으며 수행 규준을 위한 예비자료를 제공하였다. 향후 다양한 연령대의 쓰기 진단의 기초 자료로 제시될 수 있으며 아동의 경우 쓰기 장애 개입에 깊이 있게 활용될 수 있을 것이다.
본 논문에서는 개체명 인식과 언어 모델의 다중 학습을 이용한 한국어 개체명 인식 방법을 제안한다. 다중 학습은 1 개의 모델에서 2 개 이상의 작업을 동시에 분석하여 성능 향상을 기대할 수 있는 방법이지만, 이를 적용하기 위해서 말뭉치에 각 작업에 해당하는 태그가 부착되어야 하는 문제가 있다. 본 논문에서는 추가적인 태그 부착 없이 정보를 획득할 수 있는 언어 모델을 개체명 인식 작업과 결합하여 성능 향상을 이루고자 한다. 또한 단순한 형태소 입력의 한계를 극복하기 위해 입력 표상을 자소 및 형태소 품사의 임베딩으로 확장하였다. 기계 학습 방법은 순차적 레이블링에서 높은 성능을 제공하는 Bi-directional LSTM CRF 모델을 사용하였고, 실험 결과 언어 모델이 개체명 인식의 오류를 효과적으로 개선함을 확인하였다.
기존의 성도 정규화 방법은 화자 간 정규화의 정확성을 개선하기 위한 매우 좋은 방법이다. 본 논문에서는 피치 변경 발성에 기반을 둔 새로운 화자 내 warping 인수 추정 방법을 제안한다. 화자 내 피치 변경 발성은 성문과 성도에 의해 발생되는 음성의 음향학적 차이 때문에 음성의 특징 공간 분포는 다르게 나타날 것이다. 발성의 변동은 frequency 성분과 amplitude 성분의 두가지 유형이 있다. 성도 정규화는 화자 간 정규화 방법들 중에서 주파수 정규화 방법이다. 여기에서는 화자 내 정규화를 위하여 진폭 변동을 정규화하는 방법을 제안한다. 참조 피치와 입력 피치의 역비례 계산에 의해서 진폭 warping 인수를 결정하는 것이 가능하다. 성능 평가를 위한 인식 실험 결과 숫자와 단어 인식에서 0.4%∼2.3% 정도의 인식 오류가 감소되었다.
정보검색의 방법으로 단일 주제어를 키워드로 색인하여 검색하는 방식이 널리 사용되어 왔으나 문서의 내용을 정확히 표현하기 어렵고 검색 결과의 문서 집합 또한 너무 커서 사용자의 만족도가 낮다. 본 논문에서는 자연언어 처리 기술인 구문 분석 모듈을 도입해 단어 이상의 단위인 구 단위를 색인과 검색의 단위로 삼는 구 단위 색인 및 검색 기법을 사용을 제안한다. 웹 문서들 자체가 갖는 다양한 오류들로 인해 현실적으로 충분히 만족할 만할 우수한 성능의 구문 분석 모듈이 구현되기는 어려우므로 상향식 구문 분석 모듈을 구현하여 완전한 구문 분석 결과를 얻지 못하는 많은 문장에 대해서도 구 단위 색인이 가능하며 단일어 색인보다 식별력이 뛰어나 검색 성능이 향상되고 검색 과정의 부하도 줄일수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.