• 제목/요약/키워드: 단어 영상 추출

검색결과 65건 처리시간 0.023초

문서 영상 내 테이블 영역에서의 단어 추출 (Word Extraction from Table Regions in Document Images)

  • 정창부;김수형
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.369-378
    • /
    • 2005
  • 문서 영상은 문서 구조 분석을 통하여 텍스트, 그림, 테이블 등의 세부 영역으로 분할 및 분류되는데, 테이블 영역에 있는 단어는 다른 영역의 단어보다 의미가 있기 때문에 주제어 검색과 같은 응용 분야에서 중요한 역할을 한다. 본 논문에서는 문서 영상의 테이블 영역에 존재하는 문자 성분을 단어단위로 추출하는 방법을 제안한다. 테이블 영역에서의 단어 추출은 실질적으로 테이블을 구성하는 셀 영역에서 단어를 추출하는 것이기 때문에 정확한 셀 추출 과정이 필요하다. 셀 추출은 연결 요소를 분석하여 테이블 프레임을 찾아내고, 교차점 검출은 전체가 아닌 테이블 프레임에 대해서만 수행한다. 잘못 검출된 교차점은 이웃하는 교차점과의 관계를 이용하여 수정하고, 최종 교차점 정보를 이용하여 셀을 추출한다. 추출된 셀 내부에 있는 텍스트 영역은 셀 추출 과정에서 분석한 문자성분의 연결 요소 정보를 재사용하여 결정하고, 결정된 텍스트 영역은 투영 프로파일을 분석하여 문자연로 분리된다. 마지막으로 분리된 문자열에 대하여 갭 군집화와 특수 기호 검출을 수행함으로써 단어 분리를 수행한다. 제안 방법의 성능 평가를 위하여 한글 논문 영상으로부터 추출한 총 In개의 테이블 영상에 대해 실험한 결과, $99.16\%$의 단어 추출 성공률을 얻을 수 있었다.

문서 영상의 그림 영역에서 통계적 분석을 이용한 단어 영상 추출 (Word Image Decomposition from Image Regions in Document Images using Statistical Analyses)

  • 정창부;김수형
    • 정보처리학회논문지B
    • /
    • 제13B권6호
    • /
    • pp.591-600
    • /
    • 2006
  • 본 논문에서는 문서 영상의 그림 영역에서 통계적 분석을 통한 단어 영상을 추출하는 방법을 제안한다. 제안 방법은 그림 영역의 구성 요소를 문자 성분과 그래픽 성분으로 분류하기 위하여 연결요소에 대한여 통계적 분석 방법인 상자그림 분석을 적용하고, 분류된 문자 성분들에 대하여 지역적 밀집도를 분석하여 문자 영역을 추출한다. 추출된 문자 영역에서 투영 히스토그램 분석을 통하여 문자열을 추출하고, 문자열을 단어단위 영상으로 분리하기 위하여 투영 히스토그램 분석과 갭 군집화, 특수 기호 검출 등을 수행한다. 제안 방법은 임계값의 사용 대신에 그림 영역의 구성 요소들에 대하여 통계적 분석을 수행하기 때문에 그림의 형태 변화에 민감하지 않으며, 지역적 밀집도 분석으로 보다 정확한 문자 영역을 추출하였다. 또한 제안 방법의 응용 분야인 주제어 검색을 위한 오프라인의 전처리에 해당하는 문서 영상의 단어단위 영상 추출에 적용하여 제안 방법에 대한 연구의 필요성을 제시하였다.

문서 영상의 그림 영역에서 효과적인 단어 영상 추출에 관한 연구 (A Study on an Efficient method of Word Decomposition from Document Images)

  • 정창부;김수형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 춘계학술발표대회
    • /
    • pp.689-692
    • /
    • 2006
  • 본 논문에서는 그림 영역에서 단어 영상을 효과적으로 추출하는 방법을 제안한다. 제안 방법은 문자 성분과 그래픽 성분을 분류하기 위하여 구성 원소들의 통계값을 이용하는 상자그림 분석을 응용하고, 분류된 문자 성분들에 대하여 지역적 밀집도를 분석하여 문자 영역을 추출한다. 추출된 문자 영역에서 문자열 및 단어 영상을 추출하는 방법은 투영 히스토그램 분석 등을 적용한다. 제안 방법은 임계치 대신에 그림 영역의 통계값을 이용하였기 때문에 그림의 형태 변화에 민감하지 않으며, 지역적 밀집도 분석으로 보다 정확한 문자 영역을 추출하였다.

  • PDF

한글 문서 영상의 단어 검색 시스템 (A Kerword Spotting System of Korean Document Images)

  • 최윤성;오일석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.586-588
    • /
    • 2002
  • 본 논문은 한글 문서 영상의 단어 검색 시스템과 그 성능을 제시한다. 두 단계 검색 방법은 검색 속도 증가를 목적으로 하며, 첫 번째 단계에서는 매우 빠른 속도로 거친 정합을 통하여 후보 단어들을 추출한다. 두 번째 단계는 후보 단어들 중에서 미세한 정합을 통한 단어 검색이 이루어진다. 시스템은 문서 영상 구조 분석 모듈과 단어 검색 모듈로 구성된다. 실험 자료를 통해 시스템의 유용성을 입증한다.

  • PDF

인쇄 문서 영상의 단어 단위 속성 인식 (Recognition of Word-level Attributed in Machine-printed Document Images)

  • 곽희규;김수형
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권5호
    • /
    • pp.412-421
    • /
    • 2001
  • 본 논문은 문서 영상에 존재하는 개별 단어들에 대한 속성정보 추출 방법을 제안한다. 단어 단위의 속성 인식은 단어 영상 매칭의 정확도 및 속도 개선, OCR 시스템에서 인식률 향상, 문서의 재생산 등 다양한 응용 가치를 찾을 수 있으며, 메타정보(meta-information) 추출을 통해 영상 검색(image retrieval)이나 요약(summary) 생성 등에 활용할 수 있다. 제안하는 시스템에서 고려하는 단어 영상의 속성은 언어의 종류(한글, 영문), 스타일(볼드, 이탤릭, 보통, 밑줄), 문자 크기(10, 12, 14 포인트), 문자 개수 (한글: 2, 3, 4, 5, 영문: 4, 5, 6, 7, 8, 9, 10), 서체(명조, 고딕)의 다섯 가지 정보이다. 속성 인식을 위한 특징은, 언어 종류 인식에 2개, 스타일 인식에 3개, 문자 크기와 개수는 각각 1개, 한글 서체 인식은 1개, 영문 서체 인식은 2개를 사용한다. 분류기는 신경망, 2차형 판별함수(QDF), 선형 판별함수(LDF)를 계층적으로 구성한다. 다섯 가지 속성이 조합된 26,400개의 단어 영상을 사용한 실험을 통해, 제안된 방법이 소수의 특징만으로도 우수한 속성 인식 성능을 보임을 입증하였다.

  • PDF

텍스트 영역에 대한 단어 단위 분할 시스템 (A System for the Decomposition of Text Block into Words)

  • 정창부;곽희규;정선화;김수형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.293-296
    • /
    • 2000
  • 본 논문에서는 주제어 인식에 기반한 문서영상의 검색 및 색인 시스템에 적용하기 위한 단어 단위 분한 시스템을 제안한다. 제안 시스템은 영상 전처리, 문서 구조 분석을 통해 추출된 텍스트 영역을 입력으로 단어 단위 분할을 수행하는데, 텍스트 영역에 대해 텍스트 라인을 분할하고 분할된 텍스트 라인을 단어 단위로 분할하는 계층적 접근 방법을 사용한다. 텍스트라인 분할은 수평 방향 투영 프로파일을 적용하여 분할 지점을 구한다. 그리고 단어 분할은 연결요소들을 추출한 후 연결요소간의 gap 정보를 구하고, gap 군집화 기법을 사용하여 단어 단위 분한 지점을 구한다. 이때 단어 단위 분할의 성능을 저하시키는 특수기호에 대해서는 휴리스틱 정보를 이용하여 검출한다. 제안 시스템의 성능 평가는 50개의 텍스트 영역에 적용하여 99.83%의 정확도를 얻을 수 있었다.

  • PDF

SIFT를 이용한 문서 영상에서의 단어 검색 알고리즘 (Word Spotting Algorithms Using SIFT in Document Images)

  • 이득용;전효종;오일석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.488-490
    • /
    • 2011
  • 본 논문에서는 문서 영상에서 글자 분할 및 인식이 필요 없는 단어 검색 알고리즘을 제안한다. 글자 분할을 하지 않고 검색하기 위해 영상 검색에 사용되는 SIFT특징을 이용하였다. 제안하는 알고리즘은 사용자가 입력한 질의어를 질의 영상으로 변환하고, 질의 영상에서 SIFT특징을 추출한다. 추출된 특징은 문서영상에서 추출한 특징과 매칭을 통해 매칭점 쌍을 생성한다. 생성된 매칭점 쌍들을 군집화 조건에 따라 군집화 한다. 군집화는 질의 영상과 지리적 분포가 유사하게 군집화 되도록 설계되었다. 생성된 군집은 군집에 포함된 특징점의 개수가 많을수록 질의 영상과 유사하다. 따라서 N개 이상의 원소를 가지는 군집을 결과로 출력한다. 실험한 결과 제안하는 알고리즘의 가능성을 확인할 수 있었다.

스케일에 강인한 LLAH 기반 문서 인식 알고리즘 (Scale-Invariant Document Detection Algorithm Based on LLAH)

  • 이재하;박정주;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.161-162
    • /
    • 2016
  • 비슷한 코너의 모양을 가지는 다수의 글자가 포함된 문서 영상을 인식하는 일은 쉽지 않다. 일반적으로 성능이 우수하다고 알려진 SIFT 알고리즘은 코너를 기반으로 특징을 기술하는 알고리즘이기 때문에 각 글자가 비슷한 코너의 모양을 가지는 문서 영상 인식에서는 좋은 성능을 발휘하지 못한다. 반면, LLAH 는 각 단어의 크기를 알아내어 가우시안 필터와 이진화를 통해 단어를 하나의 점으로 나타내고 각 점과 점 사이의 기하 관계를 기술자로 표현하기 때문에 문서의 단어에서 점이 일관되게 추출된다면 좋은 인식 성능을 발휘한다. 그러나, 영상에서 단어의 크기를 알아내는 작업은 계산 측면에서 많은 비용을 필요로 한다. 이에 본 논문에서는 LLAH 를 사용하기 전에 반복적인 가우시안 필터와 이진화를 적용하여 단어의 크기를 알지 못하는 상황에서도 스케일에 강인하게 문서 영상을 인식할 수 있는 알고리즘을 제안한다.

  • PDF

객체 추출 및 객체별 그룹핑을 이용한 영상검색 결과의 단계적 서비스 방안 (A Scheme for Progressive Service of Retrieved Images based on Object Extraction and Grouping)

  • 박창민;김성영;김민환
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(상)
    • /
    • pp.180-185
    • /
    • 2002
  • 본 논문에서는 키워드를 입력해 검색된 영상들을 유사한 특징을 갖는 소수의 그룹으로 그룹핑하고 각 그룹을 대표하는 대표영상을 추출하여 우선적으로 사용자에게 보여주고 필요에 따라 나머지 영상들을 단계적으로 서비스할 수 있는 방안을 제시한다. 영상 그룹핑을 위한 각 영상의 특징은 영상에 포함된 중심 객체를 사용하여 추출한다. 이를 위해 검색 키워드는 객체와 연관성이 있는 단어로 제한하여 영상을 검색하며 검색된 영상으로부터 중심 객체를 추출할 수 있는 객체 추출 방법을 활용하였다. 각 영상으로부터 추출된 중심 객체에 대한 특징 벡터는 칼라 분포를 이용한다. 영상 그룹핑은 칼라분포로 표현되는 특징공간에서의 밀집도를 조사하여 높은 밀도로 모여있는 영역별로 추출하여 동일한 그룹으로 분류하였다. 대표 영상은 분류된 그룹에서 가장 밀집도가 높은 영상으로 선택된다. 한편, 얼굴이 포함된 영상은 사전에 따로 분류하고 얼굴 크기 및 얼굴 수에 따라 영상을 그룹핑하여 각 그룹에 대한 대표 영상을 선정한다. 본 연구에서 제안한 방법은 사용자에게 모든 검색 결과를 일괄적으로 보여주는 것에 비해 보다 빠른 시간 내에 사용자가 원하는 영상을 편리하면서도 효과적으로 확인할 수 있는 방법을 제공해 줄 수 있을 것으로 기대한다.

  • PDF

내용기반의 인쇄체 영문 문서 영상 검색을 위한 특징 기반 단어 검색 (A Feature -Based Word Spotting for Content-Based Retrieval of Machine-Printed English Document Images)

  • 정규식;권희웅
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권10호
    • /
    • pp.1204-1218
    • /
    • 1999
  • 문서영상 검색을 위한 디지털도서관의 대부분은 논문제목과/또는 논문요약으로부터 만들어진 색인에 근거한 제한적인 검색기능을 제공하고 있다. 본 논문에서는 영문 문서영상전체에 대한 검색을 위한 단어 영상 형태 특징기반의 단어검색시스템을 제안한다. 본 논문에서는 검색의 효율성과 정확도를 높이기 위해 1) 기존의 단어검색시스템에서 사용된 특징들을 조합하여 사용하며, 2) 특징의 개수 및 위치뿐만 아니라 특징들의 순서를 포함하여 매칭하는 방법을 사용하며, 3) 특징비교에 의해 검색결과를 얻은 후에 여과목적으로 문자인식을 부분적으로 적용하는 2단계의 검색방법을 사용한다. 제안된 시스템의 동작은 다음과 같다. 문서 영상이 주어지면, 문서 영상 구조가 분석되고 단어 영역들의 조합으로 분할된다. 단어 영상의 특징들이 추출되어 저장된다. 사용자의 텍스트 질의가 주어지면 이에 대응되는 단어 영상이 만들어지며 이로부터 영상특징이 추출된다. 이 참조 특징과 저장된 특징들과 비교하여 유사한 단어를 검색하게 된다. 제안된 시스템은 IBM-PC를 이용한 웹 환경에서 구축되었으며, 영문 문서영상을 이용하여 실험이 수행되었다. 실험결과는 본 논문에서 제안하는 방법들의 유효성을 보여주고 있다. Abstract Most existing digital libraries for document image retrieval provide a limited retrieval service due to their indexing from document titles and/or the content of document abstracts. This paper proposes a word spotting system for full English document image retrieval based on word image shape features. In order to improve not only the efficiency but also the precision of a retrieval system, we develop the system by 1) using a combination of the holistic features which have been used in the existing word spotting systems, 2) performing image matching by comparing the order of features in a word in addition to the number of features and their positions, and 3) adopting 2 stage retrieval strategies by obtaining retrieval results by image feature matching and applying OCR(Optical Charater Recognition) partly to the results for filtering purpose. The proposed system operates as follows: given a document image, its structure is analyzed and is segmented into a set of word regions. Then, word shape features are extracted and stored. Given a user's query with text, features are extracted after its corresponding word image is generated. This reference model is compared with the stored features to find out similar words. The proposed system is implemented with IBM-PC in a web environment and its experiments are performed with English document images. Experimental results show the effectiveness of the proposed methods.