• Title/Summary/Keyword: 단어 벡터

Search Result 300, Processing Time 0.025 seconds

Disambiguation of Counting Unit Noun using Word Embedding (단어 임베딩을 이용한 단위성 의존명사 분별)

  • Lee, Ju-Sang;Ock, Cheol-Young
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.246-248
    • /
    • 2016
  • 단위성 의존명사는 수나 분량 따위를 나타내는 의존명사로 혼자 사용할 수 없으며 수사나 수관형사와 함께 사용하는 의존명사이다. 단위성 의존명사가 2가지 이상인 동형이의어의 경우 기존의 인접 어절을 이용한 동형이의어 분별 모델에서는 동형이의어 분별에 어려움이 있다. 본 논문에서는 단위성 의존명사 분별을 위해 단어 임베딩을 사용했으며 총 115,767개의 단어를 벡터로 표현하였으며 분별할 의존명사 주변에 등장한 명사들과의 유사도를 계산하여 단위성 의존명사를 분별하였다. 단어 임베딩을 이용한 단위성 의존명사 분별이 효과가 있음을 보았다.

  • PDF

Relation Analysis of Disease and Biomarker based on Google Scholar (구글 학술 검색 기반의 질병과 바이오마커 관계 분석)

  • Oh, Byoung-Doo;Kim, Yu-Seop
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.238-241
    • /
    • 2017
  • 본 논문에서는 구글 학술 검색 기반의 데이터를 이용하여 질병과 폐질환과 관련된 바이오마커 단어의 유사도를 계산하는 방법을 제안한다. 질병과 바이오마커의 유사도를 계산할 때, 각 단어의 구글 학술 검색의 검색 결과를 이용하였다. 이를 통해 폐질환 관련 바이오마커와 다른 질병간의 관계를 파악하고자 히며, 의료 전문가에게 폐질환 관련 바이오마커와 다른 질병간의 새로운 관계를 제시하고자 한다. 이러한 데이터를 이용하여 계산한 결과, Wor2Vec의 결과를 이용한 코사인 유사도의 결과와 상관 계수가 약 0.64로 상당히 높은 상관 관계를 확인할 수 있었다. 따라서 이 방법을 통해 질병과 바이오마커의 관계를 파악하고자 하였다. 또한 Word2Vec을 이용한 질병과 바이오마커 단어의 벡터 값과 단어 유사도 계산 방법의 결과를 이용한 Deep Neural Networks (DNNs) 모델을 구축하고자 하며, 이를 통해 자동적으로 유사도를 분석하고자 하였다.

  • PDF

Disambiguation of Counting Unit Noun using Word Embedding (단어 임베딩을 이용한 단위성 의존명사 분별)

  • Lee, Ju-Sang;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.246-248
    • /
    • 2016
  • 단위성 의존명사는 수나 분량 따위를 나타내는 의존명사로 혼자 사용할 수 없으며 수사나 수관형사와 함께 사용하는 의존명사이다. 단위성 의존명사가 2가지 이상인 동형이의어의 경우 기존의 인접 어절을 이용한 동형이의어 분별 모델에서는 동형이의어 분별에 어려움이 있다. 본 논문에서는 단위성 의존명사 분별을 위해 단어 임베딩을 사용했으며 총 115,767개의 단어를 벡터로 표현하였으며 분별할 의존명사 주변에 등장한 명사들과의 유사도를 계산하여 단위성 의존명사를 분별하였다. 단어 임베딩을 이용한 단위성 의존명사 분별이 효과가 있음을 보았다.

  • PDF

On Word Embedding Models and Parameters Optimized for Korean (한국어에 적합한 단어 임베딩 모델 및 파라미터 튜닝에 관한 연구)

  • Choi, Sanghyuk;Seol, Jinseok;Lee, Sang-goo
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.252-256
    • /
    • 2016
  • 본 논문에서는 한국어에 최적화된 단어 임베딩을 학습하기 위한 방법을 소개한다. 단어 임베딩이란 각 단어가 분산된 의미를 지니도록 고정된 차원의 벡터공간에 대응 시키는 방법으로, 기계번역, 개체명 인식 등 많은 자연어처리 분야에서 활용되고 있다. 본 논문에서는 한국어에 대해 최적의 성능을 낼 수 있는 학습용 말뭉치와 임베딩 모델 및 적합한 하이퍼 파라미터를 실험적으로 찾고 그 결과를 분석한다.

  • PDF

The Method of Using the Automatic Word Clustering System for the Evaluation of Verbal Lexical-Semantic Network (동사 어휘의미망 평가를 위한 단어클러스터링 시스템의 활용 방안)

  • Kim Hae-Gyung;Yoon Ae-Sun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.40 no.3
    • /
    • pp.175-190
    • /
    • 2006
  • For the recent several years, there has been much interest in lexical semantic network However it seems to be very difficult to evaluate the effectiveness and correctness of it and invent the methods for applying it into various problem domains. In order to offer the fundamental ideas about how to evaluate and utilize lexical semantic networks, we developed two automatic vol·d clustering systems, which are called system A and system B respectively. 68.455.856 words were used to learn both systems. We compared the clustering results of system A to those of system B which is extended by the lexical-semantic network. The system B is extended by reconstructing the feature vectors which are used the elements of the lexical-semantic network of 3.656 '-ha' verbs. The target data is the 'multilingual Word Net-CoroNet'. When we compared the accuracy of the system A and system B, we found that system B showed the accuracy of 46.6% which is better than that of system A. 45.3%.

An Iterative Approach to Graph-based Word Sense Disambiguation Using Word2Vec (Word2Vec을 이용한 반복적 접근 방식의 그래프 기반 단어 중의성 해소)

  • O, Dongsuk;Kang, Sangwoo;Seo, Jungyun
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.1
    • /
    • pp.43-60
    • /
    • 2016
  • Recently, Unsupervised Word Sense Disambiguation research has focused on Graph based disambiguation. Graph-based disambiguation has built a semantic graph based on words collocated in context or sentence. However, building such a graph over all ambiguous word lead to unnecessary addition of edges and nodes (and hence increasing the error). In contrast, our work uses Word2Vec to consider the most similar words to an ambiguous word in the context or sentences, to rebuild a graph of the matched words. As a result, we show a higher F1-Measure value than the previous methods by using Word2Vec.

  • PDF

A Language Model based Knowledge Network for Analyzing Disaster Safety related Social Interest (재난안전 사회관심 분석을 위한 언어모델 활용 정보 네트워크 구축)

  • Choi, Dong-Jin;Han, So-Hee;Kim, Kyung-Jun;Bae, Eun-Sol
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.145-147
    • /
    • 2022
  • 본 논문은 대규모 텍스트 데이터에서 이슈를 발굴할 때 사용되는 기존의 정보 네트워크 또는 지식 그래프 구축 방법의 한계점을 지적하고, 문장 단위로 정보 네트워크를 구축하는 새로운 방법에 대해서 제안한다. 먼저 문장을 구성하는 단어와 캐릭터수의 분포를 측정하며 의성어와 같은 노이즈를 제거하기 위한 역치값을 설정하였다. 다음으로 BERT 기반 언어모델을 이용하여 모든 문장을 벡터화하고, 코사인 유사도를 이용하여 두 문장벡터에 대한 유사성을 측정하였다. 오분류된 유사도 결과를 최소화하기 위하여 명사형 단어의 의미적 연관성을 비교하는 알고리즘을 개발하였다. 제안된 유사문장 비교 알고리즘의 결과를 검토해 보면, 두 문장은 서술되는 형태가 다르지만 동일한 주제와 내용을 다루고 있는 것을 확인할 수 있었다. 본 논문에서 제안하는 방법은 단어 단위 지식 그래프 해석의 어려움을 극복할 수 있는 새로운 방법이다. 향후 이슈 및 트랜드 분석과 같은 미래연구 분야에 적용하면, 데이터 기반으로 특정 주제에 대한 사회적 관심을 수렴하고, 수요를 반영한 정책적 제언을 도출하는데 기여할 수 있을 것이다

  • PDF

A Real-Time Embedded Speech Recognition System (실시간 임베디드 음성 인식 시스템)

  • 남상엽;전은희;박인정
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.74-81
    • /
    • 2003
  • In this study, we'd implemented a real time embedded speech recognition system that requires minimum memory size for speech recognition engine and DB. The word to be recognized consist of 40 commands used in a PCS phone and 10 digits. The speech data spoken by 15 male and 15 female speakers was recorded and analyzed by short time analysis method, which window size is 256. The LPC parameters of each frame were computed through Levinson-Burbin algorithm and they were transformed to Cepstrum parameters. Before the analysis, speech data should be processed by pre-emphasis that will remove the DC component in speech and emphasize high frequency band. Baum-Welch reestimation algorithm was used for the training of HMM. In test phone, we could get a recognition rate using likelihood method. We implemented an embedded system by porting the speech recognition engine on ARM core evaluation board. The overall recognition rate of this system was 95%, while the rate on 40 commands was 96% and that 10 digits was 94%.

Analysis of the effectiveness of the Recommendation Model for the Customized Learning Course (맞춤형 학습코스 추천 모델의 효과분석 방안)

  • Han, Ji-won;Lim, Heui-seok
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.221-224
    • /
    • 2017
  • 본 논문은 사용자 수준에 적합한 맞춤형 학습코스를 추천하여 학습효과를 향상시킬 수 있는 추천모델을 개발하고, 효과분석을 위한 방안을 제시한다. 학습자 개개인의 학습수준이나 학습내용 등에 따라 적합한 학습주제를 선정하여 제공하는 것은 중요하나, 일반적인 추천은 전문가 그룹을 활용한 사람중심의 추천으로 시간이 오래 걸리는 등 자원의 비효율적 한계점[1]을 가지고 있다. 이를 극복하기 위해, TF-IDF를 이용해 단어별 가중치를 계산하여 고빈도 단어를 추출하여 벡터 공간에 배치시키고, Cosine Similarity 기법을 이용해 벡터간의 유사도를 측정하였다. 학습자 프로파일을 분석하고, 학습스킬간의 연관성을 고려하여 맞춤형 학습코스를 추천하기 위해, 워드 임베딩 기법을 적용하였고, 이를 위해 오픈소스 Gensim[2]을 이용하였다. 맞춤형 학습코스 추천 모델의 효과를 분석하기 위한 실험을 설계하고 평가 문항지를 개발하였다.

  • PDF

Visualization Study of Character Type by Emotion Word Extraction (감정어 추출을 통한 등장인물 성향 가시화 연구)

  • Baek, Yeong Tae;Park, Seung-Bo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.31-32
    • /
    • 2013
  • 본 논문에서는 영화의 등장인물의 성향을 파악하기 위해 시나리오의 대사로부터 감정어를 추출하고, 등장인물의 감정어들을 긍정, 부정, 중립의 3개로 단순화하여 등장인물의 성향을 가시화 시켜주는 방법을 제안한다. 대사로부터 감정어를 추출하기 위해 WordNet 기반의 감정어 추출 방법을 제안한다. WordNet은 단어 간에 상위어와 하위어, 유사어 등의 관계로 연결된 네트워크 구조의 사전이다. 이 네트워크 구조에서 최상위의 감정 항목과의 거리를 계산하여 단어별 감정량을 계산하여 대사를 30 차원의 감정 벡터로 표현한다. 등장인물별로 추출된 감정 벡터를 긍정, 부정, 중립의 3개의 차원으로 단순화 하여 등장인물의 성향을 표현한다.

  • PDF