최근 잡음환경에서 신뢰도 높은 음성인식을 위해 음성정보와 영상정보를 융합하는 이중모드 음성인식 방법이 활발히 연구되고 일다. 본 논문에서는 보다 음성 인식률을 향상시키기 위해 사용자가 말한 단어들의 순차 패턴을 나타내는 문맥정보를 이용한 후처리 방법을 제안한다. 이러한 문맥정보를 인식하기 위해 다층퍼셉트론 구조를 갖는 문맥정보 인식기를 제안한다 이중모드 음성인식기와 문맥정보 인식기 결과를 효율적으로 결합하기 위한 후처리 방법으로 순차 결합방법을 제안한다. 문맥정보를 이용한 이중모드 음성인식이 잡음 환경에서 90%이상의 인식률을 보였다 본 논문은 잡음환경에서 강인한 음성인식을 위해 문맥정보와 같은 사용자 행동패턴이 새로운 정보로 이용될 수 있다는 가능성을 제시한다.
영한 자동번역 시스템에서 대역어 선택 모듈은 어휘 변환을 수행한다. 일반적으로 영어 단어는 다양한 한국어 단어로 번역될 수 있는 의미적 모호성을 지니고 있으며, 고품질의 영한 자동번역 결과를 제공하기 위해서는, 해당 문맥에 가장 적합한 한국어 단어가 선택되어야 한다. 본 논문에서는 영어의 명사 어휘에 대하여, 벡터를 사용하는 2 단계 영한 대역어 선택 기법을 제안한다. 벡터를 사용하는 2 단계 대역어 선택 방식은 첫 번째 단계에서, 원문에서 사용된 영어 명사의 의미를 결정하고, 두 번째 단계에서, 해당 의미를 지니는 유사 한국어 대역어 가운데, 생성될 한국어 문맥에 맞는 적합한 한국어 대역어를 선택한다. 또한 제안하는 방법의 타당성을 검증하기 위해 현재 우리가 개발중인 Tellus-EK 영한 자동번역 시스템에 적용한 결과를 논한다.
본 논문은 국소문맥을 사용하여 만들어진 Decision List를 통해 단어의 형태적 중의성을 제거하는 방법을 기술한다. 최초 종자 연어(Seed Collocation)로 1차 Decision List를 만들어 실험 말뭉치에 적용하고 태깅된 결과를 자가 학습하는 반복과정에 의해 Decision List의 수행능력을 향상시킨다. 이 방법은 단어의 형태적 중의성 제거에 일정 거리의 연어가 가장 큰 영향을 끼친다는 직관에 바탕을 두며 사람의 추가적인 교정을 필요로 하지 않는 비교사 방식(대량의 원시 말뭉치에 기반한)에 의해 수행한다. 학습을 통해 얻어진 Decision List는 연세대 형태소 분석기인 MORANY의 형태소 분석 결과에 적용되어 태깅시 성능을 향상시킨다. 실험 말뭉치에 있는 중의성을 가진 12개의 단어들에 본 알고리즘을 적용하여 긍정적인 결과(90.61%)를 얻었다. 은닉 마르코프 모델의 바이그램(bigram) 모델과 비교하기 위하여 '들었다' 동사만을 가지고 실험하였는데 바이그램 모델의 태깅결과(72.61%)보다 뛰어난 결과(94.25%)를 얻어서 본 모델이 형태적 중의성 해소에 유용함을 확인하였다.
본 논문은 국소문맥을 사용하여 만들어진 Decision List를 통해 단어의 형태적 중의성을 제거하는 방법을 기술한다. 최초 종자 연어(Seed Collocation)로 1차 Decision List를 만들어 실험 말뭉치에 적용하고 태깅된 결과를 자가 학습하는 반복과정에 의해 Decision List의 수행능력을 향상시킨다. 이 방법은 단어의 형태적 중의성 제거에 일정 거리의 연어가 가장 큰 영향을 끼친다는 직관에 바탕을 두며 사람의 추가적인 교정을 필요로 하지 않는 비교사 방식(대량의 원시 말뭉치에 기반한)에 의해 수행한다. 학습을 통해 얻어진 Decision List는 연세대 형태소 분석기인 MORANY의 형태소 분석 결과에 적용되어 태깅시 성능을 향상시킨다. 실험 말뭉치에 있는 중의성을 가진 12개의 단어들에 본 알고리즘을 적용하여 긍정적인 결과(90.61%)를 얻었다. 은닉 마르코프 모델의 바이그램(bigram) 모델과 비교하기 위하여 '들었다' 동사만을 가지고 실험하였는데 바이그램 모델의 태깅결과(72.61%)보다 뛰어난 결과 (94.25%)를 얻어서 본 모델이 형태적 중의성 해소에 유용함을 확인하였다.
개체명 인식은 질의응답(QA), 정보 주줄(IE), 텍스트 마이닝 시스템의 성능 향상에 중요한 역할을 담당한다. 이 논문에서는 교사학습 기반의 한국어 개체명 인식에 대해 설명한다. 한국어에서 많은 개체명들이 하나 이상의 단어로 구성되어 있으며, 개체명을 구성하는 단어 사이에는 의존 관계가 존재하고, 개체명과 개체명 주위의 단어 사이에도 문맥적 의존관계를 가지고 있다. 본 논문에서는 가변길이의 개체명과 주변 문맥의 학습을 위해 트라이그램을 이용한 HMM을 사용하였으며, 자료 부족 문제를 해소하기 위해 어휘 기반이 아닌 부개체 유형 기반의 학습을 수행하였다. 학습된 개체명 인식 시스템을 이용하여 경제 분야의 신문 기사에 대한 실험 결과, 84.4%의 정확률과 90.9%의 재현률을 보였다.
본 논문은 기존에 주어진 문장 다음에 올 수 있는 문장에 대해 딥러닝을 활용하여 예측하는 시스템이며, 데이터 전처리, 문장 목적 파악, 문맥 파악의 세가지 파트로 구성되어 있다. 전처리 과정에서는 문장에 쓰인 단어에 대한 품사 정보를 Input Feature 로 추가한다. 이어서 문장 목적 파악을 위해서는 상황별로 문장을 표현하는 방법이나 단어들의 순서가 다르기 때문에 단어의 순서보다는 문장의 특징점을 학습한다. 마지막으로 문맥 파악을 위해서 이전 단계에서 학습된 문장별 목적 데이터를 기반으로 데이터의 시간적 흐름에 대한 학습을 진행함으로써 이후에 나올 수 있는 문장을 예측한다.
단어 의미 모호성 해소는 동형이의어의 의미를 문맥에 맞게 결정하는 일이다. 최근 연구에서는 희소 데이터 처리를 위해 시소러스를 사용해 의미 어휘를 압축하고 사용하는 방법이 좋은 성능을 보였다[1]. 본 연구에서는 시소러스 없이 군집화 알고리즘으로 의미 어휘를 압축하는 방법의 성능 향상을 위해 두 가지 방법을 제안한다. 첫째, 의미적으로 유사한 의미 어휘 집합인 범주(category) 정보를 군집화를 위한 초기 군집 생성에 사용한다. 둘째, 다양하고 많은 문맥 정보를 학습해 만들어진 품질 좋은 벡터를 군집화에 사용한다. 영어데이터인 SemCor 데이터를 학습하고 Senseval, Semeval 5개 데이터로 평가한 결과, 제안한 방법의 평균 성능이 기존 연구보다 1.5%p 높은 F1 70.6%를 달성했다.
최근 자연어 처리 문제에서의 단어 임베딩은 아주 큰 주목을 받고 있는 연구 주제이며 스킵그램은 성공적인 단어 임베딩 기법 중 하나이다. 주변단어들 정보를 이용해서 단어들의 의미를 학습하여 단어 임베딩 벡터를 할당하며 텍스트 자료를 효과적으로 분석할 수 있게 한다. 그러나 벡터 공간 모델의 한계로 인해 기본적인 단어 임베딩 방법들은 모든 단어가 하나의 의미를 가지고 있다는 것을 가정한다. 다의어, 즉 하나 이상의 의미를 가진 단어가 실생활에서 존재 하기 때문에 Neelakantan 등 (2014)은 군집분석 기법을 이용하여 다의어의 여러 의미들에 해당하는 의미 임베딩 벡터를 찾기 위해 MSSG (multi-sense skip-gram)를 제안했다. 본 논문에서는 MSSG의 통계적 성능을 개선시킬 수 있는 변형된 MSSG 방법을 제안한다. 먼저, 가중치를 활용한 가중문맥 벡터를 제안한다. 나아가, 군집의 수, 즉 다의어의 의미 수를 자료에서 자동적으로 추정해주는 x-means 방법을 활용한 알고리즘을 제안한다. 본 논문에서 수행한 실증자료를 기반한 모의실험에서 제안한 방법은 기존 방법에 비해 우수한 성능을 보여주었다.
단어 의미 유사도 측정은 정보 검색이나 문서 분류와 같이 자연어 처리 분야 문제를 해결하는 데 큰 도움을 준다. 이러한 의미 유사도 측정 문제를 해결하기 위하여 단어의 계층 구조를 사용한 기존 연구들이 있지만 이는 단어의 의미를 고려하고 있지 않아 만족스럽지 못한 결과를 보여주고 있다. 본 논문에서는 국립국어원에서 간행한 표준국어대사전에 50만 어휘가 추가된 우리말샘 사전을 기반으로 하여 한국어 단어에 대한 계층 구조를 파악했다. 그리고 단어의 용례를 word2vec 모델에 학습하여 단어의 문맥적 의미를 파악하고, 단어의 정의문을 sent2vec 모델에 학습하여 단어의 사전적 의미를 파악했다. 또한, 구축된 계층 구조와 학습된 word2vec, sent2vec 모델을 이용하여 한국어 단어 의미 유사도를 측정하는 모델을 제안했다. 마지막으로 성능 평가를 통해 제안하는 모델이 기존 모델보다 향상된 성능을 보임을 입증했다.
본 논문은 영한 기계번역을 위한 예제기반 기계번역에서 예제 문장의 비교를 위한 척도에 관한 것으로 주어진 질의 문장과 가장 유사한 예제 문장을 찾아내는데 사용되는 유사성 척도를 제안한다. 제안하는 척도는 편집거리 알고리즘에 기반을 둔 것으로 표면어가 일치하지 않는 단어에 대해 기본적으로 단어의 표제어 정보와 품사 정보를 이용하여 유사도를 계산한다. 편집거리 척도는 비교 단위의 순서에 의존적이기는 하지만 순서만 일치하면 동일한 유사성 기여도를 갖는 것으로 판단하기 때문에 완전 문맥을 반영하지는 못한다. 따라서 본 논문에서는 완전 문맥 반영을 위해 추가적으로 이들 정보 외에 일치하는 단위 정보를 갖는 연속된 단어들에 대해 연속 정보를 반영한 문맥 가중치를 제안한다. 또한 비유사성 정도를 의미하는 척도인 편집거리 척도를 유사성 척도로 변경하고, 문맥 가중치가 적용된 척도를 문장 비교에 적용하기 위하여 정규화를 수행하며, 이를 통하여 유사도에 따른 순위를 결정한다. 또한 언어적 정보를 이용한 기존 방법류들에 대한 일반화를 시도하였으며, 문맥 가중치가 적용된 척도의 우수성을 증명하기 위해 일반화된 기존 방법류들과의 비교 실험을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.