• 제목/요약/키워드: 단어 문맥

검색결과 211건 처리시간 0.03초

출입자 판별을 위한 문맥 제시형 화자인식 (The Text-Prompt Speaker Recognition for Customer Discrimination)

  • 서광석
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 1호
    • /
    • pp.127-130
    • /
    • 1998
  • 본 연구에서는 문맥 종속 또는 문맥 독립형 화자 인식에서의 단점을 개선하는 방법으로 문맥 제시형 화자 인식을 수행하였다. 문맥 종속형 화자 인식은 제한된 문장이나 단어를 발성하여 출입 판별을 하는 방식으로 구현하기는 쉬우나 사칭자가 사용자의 목소리를 흉내낼 수 있으며[1], 문맥 독립형 화자 인식은 임의의 대화 문장이나 대화를 사용에게 유도하여 일정 시간 동안 녹음한 후에 이를 이용하여 사칭자가 접근을 허가 받을 수 있다는 단번이 있다. 또한 문맥 독립형 화자 인식에서는 접근 허가를 받기까지 많은 학습 시간이 필요하며 학습 시간이 적을 경우에 상당한 인식률의 저하가 발생된다. 문맥 제시형 화자 인식은 랜덤하게 제시된 단어만을 화자가 발성함으로써 특정한 문장이나 단어의 배열을 미리 녹음했다가 재생하는 방법을 배제할 수 있을 뿐만 아니라 동시에 학습을 위한 많은 시간을 소모하지 않는다는 장점이 있다. 본 논문에서는 화자로 하여금 랜덤하게 제시된 여러 개의 단어들을 순서적으로 발성하도록 하여, 발성 단어를 인식한 후에 인식된 단어를 통하여 화자를 판별하는 방법을 사용하였다.

  • PDF

적절다의의미 선택과정에서 관찰되는 숙련독자의 문맥의존적인 처리특성 (Context-dependent processing of skilled readers in selecting appropriate meaning of ambiguous words)

  • 이병택
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2002년도 춘계학술대회
    • /
    • pp.225-230
    • /
    • 2002
  • 연구는 다의어의 문맥통합과정에서 관찰되는 숙련독자와 미숙련독자간의 개인차가 숙련독자의 문맥의존적인 처리특성에서 비롯되는지를 살펴보고자 하였다. 숙련독자의 문맥의존적인 처리특성을 좀 더 직접적으로 검토하기 위해 검사단어 강제선택과제를 고안하여 일련의 실험을 수행하였다. 편중문맥을 사용한 실험 1에서 숙련독자는 다의어의 주도적 의미가 부적절 검사단어로 사용된 실험조건과 무관단어가 부적절 검사단어로 사용된 통제조건간의 선택반응시간에 차이가 없었다. 한편 적절검사단어 선택을 방해하도록 구성된 갈등문맥이 사용된 실험 2에서 숙련독자는 미숙련독자보다 선택반응 시간이 느려서, 숙련독자가 적절검사단어 선택과정에서 더욱 큰 간섭을 경험했음을 보여주었다. 전체적으로 실험의 결과들은 숙련독자의 다의어 처리 특성이 문맥의존적이라고 가정할 때 잘 설명될 수 있는 것으로 보여진다.

  • PDF

음소 모델의 Back-Off 기법을 이용한 어휘독립 음성인식기의 성능개선 (Performance Improvement of Vocabulary Independent Speech Recognizer using Back-Off Method on Subword Model)

  • 구동욱;최준기;오영환
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.19-22
    • /
    • 2000
  • 어휘독립 음성인식이란 음향학적 모델 훈련에 사용하지 않은 어휘들을 인식하는 것이다. 단어모델을 이용한 어휘독립 음성인식 시스템은 발음표기로 변환된 인식대상어휘에 대하여 문맥 종속형 부단어(context dependent subword) 단위로 훈련된 모델을 연결하여 단어 모델을 만들고 이 단어 모델로 인식을 수행한다. 이러한 시스템의 경우 훈련과정에서 나타나지 않는 문맥 종속형 부단어가 인식대상어휘에서 나타나게 되고, 따라서 정확한 단어모델을 구성할 수 없다는 문제점이 있다 본 논문에서는 문맥 종속형 부단어 구분의 계층화를 통한 back-off 선택 방법을 이용하여 새롭게 나타난 문맥 종속형 부단어 대신 연결될 부단어 모델을 찾아내는 방법을 제안한다 제안된 선택 방법은 새롭게 나타난 문맥 종속형 부단어를 포함하는 상위의 부단어를 찾아내는 방법이다. 실험 결과 10단어 세트에서 $97.5\%$ 50단어 세트에서$90.16\%$ 100 단어 세트에서 $82.08\%$의 인식률을 얻었다.

  • PDF

지지벡터기계를 이용한 단어 의미 분류 (Word Sense Classification Using Support Vector Machines)

  • 박준혁;이성욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.563-568
    • /
    • 2016
  • 단어 의미 분별 문제는 문장에서 어떤 단어가 사전에 가지고 있는 여러 가지 의미 중 정확한 의미를 파악하는 문제이다. 우리는 이 문제를 다중 클래스 분류 문제로 간주하고 지지벡터기계를 이용하여 분류한다. 세종 의미 부착 말뭉치에서 추출한 의미 중의성 단어의 문맥 단어를 두 가지 벡터 공간에 표현한다. 첫 번째는 문맥 단어들로 이뤄진 벡터 공간이고 이진 가중치를 사용한다. 두 번째는 문맥 단어의 윈도우 크기에 따라 문맥 단어를 단어 임베딩 모델로 사상한 벡터 공간이다. 실험결과, 문맥 단어 벡터를 사용하였을 때 약 87.0%, 단어 임베딩을 사용하였을 때 약 86.0%의 정확도를 얻었다.

단어 중의성 해소를 위한 SVM 분류기 최적화에 관한 연구 (A Study on Optimization of Support Vector Machine Classifier for Word Sense Disambiguation)

  • 이용구
    • 정보관리연구
    • /
    • 제42권2호
    • /
    • pp.193-210
    • /
    • 2011
  • 이 연구는 단어 중의성 해소를 위해 SVM 분류기가 최적의 성능을 가져오는 문맥창의 크기와 다양한 가중치 방법을 파악하고자 하였다. 실험집단으로 한글 신문기사를 적용하였다. 문맥창의 크기로 지역 문맥은 좌우 3단어, 한 문장, 그리고 좌우 50바이트 크기를 사용하였으며, 전역문맥으로 신문기사 전체를 대상으로 하였다. 가중치 부여 기법으로는 단순빈도인 이진 단어빈도와 단순 단어빈도를, 정규화 빈도로 단순 또는 로그를 취한 단어빈도 ${\times}$ 역문헌빈도를 사용하였다. 실험 결과 문맥창의 크기는 좌우 50 바이트가 가장 좋은 성능을 보였으며, 가중치 부여 방법은 이진 단어빈도가 가장 좋은 성능을 보였다.

강건한 음향모델을 위한 모델의 상태와 문맥환경에 관한 연구 (A Study on Context Environment and Model State for Robustness Acoustic Models)

  • 최재영;오세진;황도삼
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.366-369
    • /
    • 2003
  • 본 연구에서는 강건한 문맥의존 음향모델을 작성하기 위한 기초적인 연구로서 문맥환경과 상태수의 변화에 따른 음향모델의 성능을 고찰하고자 한다. 음성은 시간함수로 표현되며 음절, 단어, 연속음성을 발성할때 자음과 모음에 따라 발성시간에 차이가 있으며 음성인식의 최소 인식단위로 널리 사용되는 음소의 앞과 뒤에 오는 문맥환경에 따라 인식성능에 많은 차이를 보이고 있다. 따라서 본 연구에서는 시간의 변화(상태수의 변화)와 상태분할 과정에서 문맥환경의 변화를 고려하여 다양한 형태의 문맥의존 음향모델을 작성하였다. 모델학습은 음소결정트리 기반 SSS 알고리즘(Phonetic Decision Tree-based Successive State Splitting: PDT-555)을 이용하였다 PDT-SSS 알고리즘은 미지의 문맥정보를 해결하기 위해 문맥방향과 시간방향으로 목표 상태수에 도달할 때까지 상태분할을 수행하여 모델을 작성하는 방법이다. 본 연구에서 강건한 문맥의존 음향모델을 학습하기 위한 방법의 유효성을 확인하기 위해 국어공학센터의 452 단어를 대상으로 음소와 단어인식 실험을 수행하였다. 실험결과, 음성의 시간변이에 따른 모델의 상태수와 각 음소의 문맥환경에 따라 인식성능의 변화를 고찰할 수 있었다. 따라서 본 연구는 향후 음성인식 시스템의 강건한 문맥의존 음향모델을 작성하는데 유효할 것으로 기대된다.

  • PDF

음성의 시간변이와 상태분할을 고려한 강건한 문맥의존 음향모델에 관한 연구 (A study on the robust context-dependent acoustic models by considering the state splitting and the time variant of speech)

  • 오세진;김광동;노덕규;정현열
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.229-231
    • /
    • 2003
  • 일반적으로 음성은 시간함수로 표현되며 음성인식에서 표준모델을 모델링하는 것은 매우 중요한 문제이다. 음절 단어, 연속음성을 발성할 때 자음과 모음에 따라 발성시간에 차이가 있으며 이를 잘 모델링하는 것 또한 음성인식에서는 중요한 문제라고 할 수 있다. 따라서 본 연구에서는 강건한 음향모델을 학습하기 위해 시간의 변화와 상태분할과정에서의 모델의 변화를 고려하여 다양한 구조의 초기모델을 작성하였다. 각 초기모델에 의한 HM-Net 문맥의존 음향모델은 음소결정트리 기반 SSS 알고리즘(PDT-SSS)을 이용하였다. PDT-SSS 알고리즘은 미지의 문맥정보를 해결하기 위해 문맥방향과 시간방향으로 목표 상태수에 도달할 때까지 상태분할을 수행하여 모델을 작성하는 방법이다. 음성의 시간변이를 고려한 강건한 문맥의존 음향모델을 작성하기 위해 설정한 각 모델의 구조에 대한 유효성을 확인하기 위해 국어공학센터의 452 단어를 대상으로 음소와 단어인식 실험을 수행한 결과. 음소인식의 경우 상태수 2000개에서 2상태 구조의 모델에 비해 4상태 구조가 약 11.4% 향상된 인식성능과 39.2초의 인식시간을 단축할 수 있었다. 또한 단어인식의 경우 상태수 2000개에서 1상태 구조의 모델에 비해 4상태 구조가 약 5% 향상된 인식성능과 4상태 구조에서 한 단어를 인식하는데 평균 0.8초가 소요되었다. 따라서 강건한 문맥의존 음향모델을 작성하기 위해 수행한 초기모델의 구조에 관한 연구가 향후 음성인식 시스템을 구축하는데 유효함을 확인할 수 있었다.

  • PDF

한국어 연결숫자인식을 위한 숫자 모델링에 관한 연구 (A Study on Digit Modeling for Korean Connected Digit Recognition)

  • 김기성
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.293-297
    • /
    • 1998
  • 전화망에서의 연결 숫자 인식 시스템의 개발에 대한 내용을 다루며, 이 시스템에서 다양한 숫자 모델링 방법들을 구현하고 비겨하였다. Word 모델의 경우 문맥독립 whole-word 모델을 구현하였으며, sub-word 모델로는 triphone 모델과 불파음화 자음을 모음에 포함시킨 modified triphone 모델을 구현하였다. 그리고 tree-based clustering 방법을 sub-word 모델과 문맥종속 whole-word 모델에 적용하였다. 이와 같은 숫자모델들에 대해 연속 HMM을 이용하여 화자독립 연결숫자 인식 실험을 수행한 결과, 문맥종속 단어 모델이 문맥독립 단어 모델보다 우수한 성능을 나타냈으며, triphone 모델과 modified triphone 모델은 유사한 성능을 나타냈다. 특히 tree-based clustering 방법을 적용한 문맥종속 단어 모델이 4연 숫자열에 대해 99.8%의 단어 dsltlr률 및 99.1%의 숫자열 인식률로서 가장 우수한 성능을 나타내었다.

  • PDF

KoELMo: 한국어를 위한 문맥화된 단어 표상 (KoELMo: Deep Contextualized word representations for Korean)

  • 홍승연;나승훈;신종훈;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.296-298
    • /
    • 2018
  • 기존의 Word2Vec이나 Glove 등의 단어 임베딩 모델은 문맥에 상관없이 단어의 Vector들이 고정된 Vector를 가지는 문제가 있다. ELMo는 훈련된 Bi-LSTM 모델을 통해서 문장마다 Word Embedding을 수행하기 때문에 문맥에 상관없이 고정된 Vector를 가지는 문제를 해결하였다. 본 논문에서는 한국어와 같이 형태적으로 복잡한 언어의 경우 수 많은 단어가 파생될 수 있어 단어 임베딩 벡터를 직접적으로 얻는 방식에는 한계가 있기 때문에 형태소의 표상들을 결합하여 단어 표상을 사용한 ELMo를 제안한다. ELMo 단어 임베딩을 Biaffine attention 파싱 모델에 적용 결과 UAS에서 91.39%, LAS에서 90.79%으로 기존의 성능보다 향상된 성능을 얻었다.

  • PDF

근접 문맥정보와 대규모 웹 데이터를 이용한 단어 의미 중의성 해소

  • 강신재;강인수
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2009년도 춘계학술대회 미래 IT융합기술 및 전략
    • /
    • pp.208-211
    • /
    • 2009
  • 본 논문은 구글(Google), 워드넷(WordNet)과 같이 공개된 웹 자원과 리소스를 이용한 비교사학습(Unsupervised learning) 방법을 제안하여 단어 의미의 중의성 문제를 해결하고자 한다. 구글 검색 API를 이용하여 단어의 확장된 근접 문맥정보를 추출하고, 워드넷의 계층체계와 synset을 이용하여 단어 의미 구분정보를 자동 추출한 후, 추출된 정보 간 유사도 계산을 통해 중의성을 갖는 단어의 의미를 결정한다.

  • PDF