• Title/Summary/Keyword: 단어 동시출현 정보

Search Result 94, Processing Time 0.034 seconds

An Investigation on Intellectual Structure of Social Sciences Research by Analysing the Publications of ICPSR Data Reuse (ICPSR 데이터 재이용 저작물 분석을 통한 사회과학 분야의 지적구조 분석)

  • Chung, EunKyung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.52 no.1
    • /
    • pp.341-357
    • /
    • 2018
  • Due to the paradigm of open science and advanced digital information technology, data sharing and re-use have been actively conducted and considered data-intensive in a wide variety of disciplines. This study aims to investigate the intellectual structure portrayed by the research products re-using the data sets from ICPSR. For the purpose of this study, a total of 570 research products published in 2017 from the ICPSR site were collected and analyzed in two folds. First, the authors and publications of those research products were analyzed in order to show the trends of research using ICPSR data. Authors tend to be affiliated with university or research institute in the United States. The subject areas of journals are recognized into Social Sciences, Health, and Psychology. In addition, a network with clustering analysis was conducted with using co-word occurrence from the titles of the research products. The results show that there are 12 clusters, mental health, tabocco effect, disorder in school, childhood, and adolescence, sexual risk, child injuries, physical activity, violent behavior, survey, family role, women, problem behavior, gender differences in research areas. The structure portrayed by ICPSR data re-uses demonstrates that substantial number of studies in Medicine have been conducted with a perspective of social sciences.

A Study on Intellectual Structure of Library and Information Science in Korea (문헌정보학의 지식 구조에 관한 연구)

  • Yoo, Yeong-Jun
    • Journal of the Korean Society for information Management
    • /
    • v.20 no.3
    • /
    • pp.277-297
    • /
    • 2003
  • This study was conducted upon the premise that index terms display the intellectual structure of a specific subject field. In this study, and attempt was made to grasp the intellectual structure of Library and Information. Science by clustering the index terms of the journals of the related academic societies at the Library of National Assembly - such as the Journal of the Korean Society for Information Management, the Journal of the Korean Library and Information Science Society, and the Journal of the Korean Society for Library and Information Science. Through the course of the study, index term clusters were generated based on the linkage of the index terms and the frequency of co-occurrence, and moreover, time periods analysis was conducted along with studies on first-appearing terms, in order to clarify the trend and development process of the Library and Information Science. This study also analysed the difference between two intellectual structure by comparing the structure generated by index term clusters with the existing structure of traditional classification systems.

Introducing Keyword Bibliographic Coupling Analysis (KBCA) for Identifying the Intellectual Structure (지적구조 규명을 위한 키워드서지결합분석 기법에 관한 연구)

  • Lee, Jae Yun;Chung, EunKyung
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.309-330
    • /
    • 2022
  • Intellectual structure analysis, which quantitatively identifies the structure, characteristics, and sub-domains of fields, has rapidly increased in recent years. Analysis techniques traditionally used to conduct intellectual structure analysis research include bibliographic coupling analysis, co-citation analysis, co-occurrence analysis, and author bibliographic coupling analysis. This study proposes a novel intellectual structure analysis method, Keyword Bibliographic Coupling Analysis (KBCA). The Keyword Bibliographic Coupling Analysis (KBCA) is a variation of the author bibliographic coupling analysis, which targets keywords instead of authors. It calculates the number of references shared by two keywords to the degree of coupling between the two keywords. A set of 1,366 articles in the field of 'Open Data' searched in the Web of Science were collected using the proposed KBCA technique. A total of 63 keywords that appeared more than 7 times, extracted from 1,366 article sets, were selected as core keywords in the open data field. The intellectual structure presented by the KBCA technique with 63 key keywords identified the main areas of open government and open science and 10 sub-areas. On the other hand, the intellectual structure network of co-occurrence word analysis was found to be insufficient in the overall structure and detailed domain structure. This result can be considered because the KBCA sufficiently measures the relationship between keywords using the degree of bibliographic coupling.

Microplastics Intellectual Network Analysis based on Bigdata (빅데이터 기반한 미세플라스틱 지적네트워크 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.239-259
    • /
    • 2022
  • Since 2019, research on microplastics has been actively conducted around the world, so analyzing the differences between domestic and foreign microplastics research can be a milestone in establishing the direction of domestic research. In this study, microplastic papers from KCI and WoS were extracted and the differences between domestic and foreign studies were analyzed using a network analysis methodology based on big data such as author keyword co-occurrence word analysis, thesis co-citation analysis, and author co-citation analysis. As a result of the analysis, the analysis of the research topic confirmed that studies that could affect the human body and the treatment of microplastics in daily life were additionally needed in Korea. In the analysis of the depth of thesis citation that examines the quality of research, it was found that Korea was still insufficient at 2.25 overseas and 1.39 in Korea. In the analysis of the composition of the joint research front, where various researchers participate and share information, 3 out of 22 clusters in Korea are Star type. In the case of overseas, all 19 clusters have a mesh structure, so it was confirmed that information flow and sharing were insufficient in specific research fields in Korea. These research results confirmed the need to expand the research topic of microplastics, improve the quality of research, and improve the research promotion system in which various researchers participate. In addition, if the automation program is developed based on topic modeling, it will be possible to build a system capable of real-time analysis.

Time Series Analysis of Intellectual Structure and Research Trend Changes in the Field of Library and Information Science: 2003 to 2017 (문헌정보학 분야의 지적구조 및 연구 동향 변화에 대한 시계열 분석: 2003년부터 2017년까지)

  • Choi, Hyung Wook;Choi, Ye-Jin;Nam, So-Yeon
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.89-114
    • /
    • 2018
  • Research on changes in research trends in academic disciplines is a method that enables observation of not only the detailed research subject and structure of the field but also the state of change in the flow of time. Therefore, in this study, in order to observe the changes of research trend in library and information science field in Korea, co-word analysis was conducted with Korean author keywords from three types of journals which were listed in the Korea Citation Index(KCI) and have top citation impact factor were selected. For the time series analysis, the 15-year research period was accumulated in 5-years units, and divided into 2003~2007, 2003~2012, and 2003~2017. The keywords which limited to the frequency of appearance 10 or more, respectively, were analyzed and visualized. As a result of the analysis, during the period from 2003 to 2007, the intellectual structure composed with 25 keywords and 8 areas was confirmed, and during the period from 2003 to 2012, the structure composed by 3 areas 17 sub-areas with 76 keywords was confirmed. Also, the intellectual structure during the period from 2003 to 2017 was crowded into 6 areas 32 consisting of a total of 132 keywords. As a result of comprehensive period analysis, in the field of library and information science in Korea, over the past 15 years, new keywords have been added for each period, and detailed topics have also been subdivided and gradually segmented and expanded.

Improved Multidimensional Scaling Techniques Considering Cluster Analysis: Cluster-oriented Scaling (클러스터링을 고려한 다차원척도법의 개선: 군집 지향 척도법)

  • Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.2
    • /
    • pp.45-70
    • /
    • 2012
  • There have been many methods and algorithms proposed for multidimensional scaling to mapping the relationships between data objects into low dimensional space. But traditional techniques, such as PROXSCAL or ALSCAL, were found not effective for visualizing the proximities between objects and the structure of clusters of large data sets have more than 50 objects. The CLUSCAL(CLUster-oriented SCALing) technique introduced in this paper differs from them especially in that it uses cluster structure of input data set. The CLUSCAL procedure was tested and evaluated on two data sets, one is 50 authors co-citation data and the other is 85 words co-occurrence data. The results can be regarded as promising the usefulness of CLUSCAL method especially in identifying clusters on MDS maps.

An Analysis of News Media Coverage of the QRcode: Based on 2008-2023 News Big Data (QR코드에 대한 언론 보도 경향: 2008-2023년 뉴스 빅데이터 분석)

  • Sunjeong Kim;Jisu Lee
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.2
    • /
    • pp.269-294
    • /
    • 2024
  • This study analyzed the news media coverage of QRcodes in Korea over a 16-year period (2008 to 2023). A total of 13,335 articles were extracted from the Korea Press Foundation's BigKinds. A quantitative and content analysis was conducted on the news frames. The results indicated that the quantity of news coverage has increased. The greatest quantity of news coverage was observed in 2020, and the most frequently discussed topic in the news was 'IT_Science'. The results of the keyword analysis indicated that the primary words were 'QRcode', 'smartphone', 'service', 'application', and 'payment'. The news media primarily focused on the QRcode's ability to provide instant access and recognition technology. This study demonstrates that advanced information and communication technologies and the increased prevalence of mobile devices have led to a rise in the utilization of QRcodes. Furthermore, QRcodes have become a significant information media in contemporary society.

A Content Analysis of Journal Articles Using the Language Network Analysis Methods (언어 네트워크 분석 방법을 활용한 학술논문의 내용분석)

  • Lee, Soo-Sang
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.4
    • /
    • pp.49-68
    • /
    • 2014
  • The purpose of this study is to perform content analysis of research articles using the language network analysis method in Korea and catch the basic point of the language network analysis method. Six analytical categories are used for content analysis: types of language text, methods of keyword selection, methods of forming co-occurrence relation, methods of constructing network, network analytic tools and indexes. From the results of content analysis, this study found out various features as follows. The major types of language text are research articles and interview texts. The keywords were selected from words which are extracted from text content. To form co-occurrence relation between keywords, there use the co-occurrence count. The constructed networks are multiple-type networks rather than single-type ones. The network analytic tools such as NetMiner, UCINET/NetDraw, NodeXL, Pajek are used. The major analytic indexes are including density, centralities, sub-networks, etc. These features can be used to form the basis of the language network analysis method.

Text Mining Driven Content Analysis of Ebola on News Media and Scientific Publications (텍스트 마이닝을 이용한 매체별 에볼라 주제 분석 - 바이오 분야 연구논문과 뉴스 텍스트 데이터를 이용하여 -)

  • An, Juyoung;Ahn, Kyubin;Song, Min
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.50 no.2
    • /
    • pp.289-307
    • /
    • 2016
  • Infectious diseases such as Ebola virus disease become a social issue and draw public attention to be a major topic on news or research. As a result, there have been a lot of studies on infectious diseases using text-mining techniques. However, there is no research on content analysis of two media channels that have distinct characteristics. Accordingly, in this study, we conduct topic analysis between news (representing a social perspective) and academic research paper (representing perspectives of bio-professionals). As text-mining techniques, topic modeling is applied to extract various topics according to the materials, and the word co-occurrence map based on selected bio entities is used to compare the perspectives of the materials specifically. For network analysis, topic map is built by using Gephi. Aforementioned approaches uncovered the difference of topics between two materials and the characteristics of the two materials. In terms of the word co-occurrence map, however, most of entities are shared in both materials. These results indicate that there are differences and commonalties between social and academic materials.

A Bibliometric Analysis of Research Trends on Disaster in Korea (국내 재난 관련 연구 동향에 대한 계량정보학적 분석)

  • Lee, Jae Yun;Kim, Soojung
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.4
    • /
    • pp.103-124
    • /
    • 2016
  • This study aims to investigate the research trends of disaster in Korea through a bibliometric analysis. To do that, it analyzed 772 scholarly articles published from 2002 to 2016, retrieved from KCI (Korean Citation Index) database. For analysis, discipline profiling analysis, journal profiling analysis, and co-word analysis methods were used. The study found that the number of scholarly articles on disaster has increased, especially after Sewol ferry disaster occurred in 2004. The major discipline areas were identified as 'policy sciences/public administration' area, 'engineering' area, 'GIS/telecommunication' area, and 'medical/humanities/social sciences' area. In terms of time series, the proportion of scholarly articles published in 'policy sciences/public administration' area has decreased since 2014 and at the same time, discipline areas have been diversified including law, medical, and journalism.