자연어 문서에 출현하는 단어에는 중의적 단어가 있으며, 이 단어에서 발생되는 의미 모호성은 대개 그 문맥에 따라 해소된다. 의미 모호성 해소 연구 중, 한국어 단어 공간 모델 방법은 의미 태그 부착 말뭉치를 이용하여 단어의 문맥 정보를 구축하고 이를 이용하여 모호성을 해결하는 연구로서 비교적 좋은 성능을 보였다. 본 연구에서는 Word2Vec를 이용하여 기존 연구인 한국어 단어 공간 모델의 단어 벡터를 효과적으로 축소할 수 있는 방법을 제안한다. 세종 형태 의미 분석 말뭉치로 실험한 결과, 제안한 방법이 기존 성능인 93.99%와 유사한 93.32%의 정확률을 보이면서도 약 7.6배의 속도 향상이 있었다.
단어 임베딩 모델 중 현재 널리 사용되는 word2vec 모델은 언어의 의미론적 유사성을 잘 반영한다고 알려져 있다. 본 논문은 word2vec 모델로 학습된 단어 벡터가 실제로 의미론적 유사성을 얼마나 잘 반영하는지 확인하는 것을 목표로 한다. 즉, 유사한 범주의 단어들이 벡터 공간상에 가까이 임베딩되는지 그리고 서로 구별되는 범주의 단어들이 뚜렷이 구분되어 임베딩되는지를 확인하는 것이다. 간단한 군집화 알고리즘을 통한 검증의 결과, 상식적인 언어 지식과 달리 특정 범주의 단어들은 임베딩된 벡터 공간에서 뚜렷이 구분되지 않음을 확인했다. 결론적으로, 단어 벡터들의 유사도가 항상 해당 단어들의 의미론적 유사도를 의미하지는 않는다. Word2vec 모델의 결과를 응용하는 향후 연구에서는 이런 한계점에 고려가 요청된다.
한국어 단어의 의미 중의성 해소 방법들은 주로 소규모의 의미 태그 부착 말뭉치나 사전 정보 등을 이용하여 엔트로피 정보, 조건부 확률, 상호정보 등을 각각 계산하고 이를 중의성 해소에 이용하는 방법 등으로 다양하게 제안되었다. 본 논문에서는 대규모로 구축된 의미 태그 부착 말뭉치를 이용하여 한국어 단어 벡터를 추출하고 이 벡터들 사이의 유사도를 계산하여 단어 의미 중의성을 해소하는 단어 공간 모델 방법을 제안한다. 세종 형태의미분석 말뭉치를 사용하여 학습하고 임의의 200문장(583 단어 종류)에 대해 평가한 결과, 정확도가 94%로 기존의 방법에 비해 매우 우수했다.
본 논문에서는 기존 Bag-of-Visual words (BoW) 접근법에서 반영하지 못한 이미지의 공간 정보를 활용하기 위해서 Spatial Pyramid Matching (SPM) 기법을 Latent Dirichlet Allocation (LDA) 모델에 결합하여 이미지를 분류하는 모델을 제안한다. BoW 접근법은 이미지 패치를 시각적 단어로 변환하여 시각적 단어의 분포로 이미지를 표현하는 기법이며, 기존의 방식이 이미지 패치의 위치정보를 활용하지 못하는 점을 극복하기 위하여 SPM 기법을 도입하는 연구가 진행되어 왔다. 또한 이미지 패치를 정확하게 표현하기 위해서 벡터 양자화 대신 희소 부호화 기법을 이용하여 이미지 패치를 시각적 단어로 변환하였다. 제안하는 모델은 BoW 접근법을 기반으로 위치정보를 활용하는 SPM 을 LDA 모델에 적용하여 시각적 단어의 토픽을 추론함과 동시에 multi-class SVM 분류기를 이용하여 이미지를 분류한다. UIUC 스포츠 데이터를 이용하여 제안하는 모델의 분류 성능을 검증하였다.
본 연구에서는 벡터 공간 모델과 HAL (Hyperspace Analog to Language)을 적용해서 단어 의미 유사성을 군집한다. 일정한 크기의 문맥을 통해서 단어 간의 상관성을 측정하는 HAL을 도입하고(Lund and Burgess 1996), 상관성 측정에서 고빈도와 저빈도에 다르게 측정되는 왜곡을 줄이기 위해서 벡터 공간 모델을 적용해서 단어 쌍의 코사인 유사도를 측정하였다(Salton et al. 1975, Widdows 2004). HAL과 벡터 공간 모델로 만들어지는 공간은 다차원이므로, 차원을 축소하기 위해서 PCA (Principal Component Analysis)와 SVD (Singular Value Decomposition)를 적용하였다. 유사성 군집을 위해서 비감독 방식과 감독 방식을 적용하였는데, 비감독 방식에는 클러스터링을 감독 방식에는 SVM (Support Vector Machine), 나이브 베이즈 구분자(Naive Bayes Classifier), 최대 엔트로피(Maximum Entropy) 방식을 적용하였다. 이 연구는 언어학적 측면에서 Harris (1954), Firth (1957)의 분포 가설(Distributional Hypothesis)을 활용한 의미 유사도를 측정하였으며, 심리언어학적 측면에서 의미 기억을 설명하기 위한 모델로 벡터 공간 모델과 HAL을 결합하였으며, 전산적 언어 처리 관점에서 기계학습 방식 중 감독 기반과 비감독 기반을 적용하였다.
텍스트마이닝 연구의 기본적인 난제는 기존 텍스트 표현모델이 자연어 문장으로 기술된 텍스트 데이터로부터 의미 또는 개념 정보를 표현하지 않는데 기인한다. 기존 텍스트 표현모델인 벡터공간 모델(vector space model), 불리언 모델(Boolean model), 통계 모델(statistical model), 텐서공간 모델(tensor space model) 등은 'Bag-of-Words' 방식에 바탕을 두고 있다. 이러한 텍스트 모델들은 텍스트에 포함된 단어와 그것의 출현 횟수만으로 텍스트를 표현하므로, 단어의 함축 의미, 단어의 순서 및 텍스트의 구조를 전혀 표현하지 못한다. 대부분의 텍스트 마이닝 기술은 대상 문서를 'Bag-of-Words' 방식의 텍스트 모델로 표현함을 전제로 하여 발전하여 왔다. 하지만 오늘날 빅데이터 시대를 맞이하여 방대한 규모의 텍스트 데이터를 보다 정밀하게 분석할 수 있는 새로운 패러다임의 표현모델을 요구하고 있다. 본 논문에서 제안하는 텍스트 표현모델은 개념공간을 문서 및 단어와 동등한 매핑 공간으로 상정하여, 그 세 가지 공간에 대한 연관 관계를 모두 표현한다. 개념공간의 구성을 위해서 위키피디어 데이터를 활용하며, 하나의 개념은 하나의 위키피디어 페이지로부터 정의된다. 결과적으로 주어진 텍스트 문서집합을 의미적으로 해석이 가능한 3차 텐서(3-order tensor)로 표현하게 되며, 따라서 제안 모델을 텍스트 큐보이드 모델이라 명명한다. 20Newsgroup 문서집합을 사용하여 문서 및 개념 수준의 클러스터링 정확도를 평가함으로써, 제안 모델이 'Bag-of-Word' 방식의 대표적 모델인 벡터공간 모델에 비해 우수함을 보인다.
본 논문에서는 한국어에 최적화된 단어 임베딩을 학습하기 위한 방법을 소개한다. 단어 임베딩이란 각 단어가 분산된 의미를 지니도록 고정된 차원의 벡터공간에 대응 시키는 방법으로, 기계번역, 개체명 인식 등 많은 자연어처리 분야에서 활용되고 있다. 본 논문에서는 한국어에 대해 최적의 성능을 낼 수 있는 학습용 말뭉치와 임베딩 모델 및 적합한 하이퍼 파라미터를 실험적으로 찾고 그 결과를 분석한다.
본 논문에서는 한국어 문서의 분류 정밀도 향상을 위해 애매어와 해소어 정보를 이용한 확장된 벡터 공간 모델을 제안하였다. 벡터 공간 모델에 사용된 벡터는 같은 정도의 가중치를 갖는 축이 하나 더 존재하지만, 기존의 방법은 그 축에 아무런 처리가 이루어지지 않았기 때문에 벡터끼리의 비교를 할 때 문제가 발생한다. 같은 가중치를 갖는 축이 되는 단어를 애매어라 정의하고, 단어와 분야 사이의 상호정보량을 계산하여 애매어를 결정하였다. 애매어에 의해 애매성을 해소하는 단어를 해소어라 정의하고, 애매어와 동일한 문서에서 출현하는 단어 중에서 상호정보량을 계산하여 해소어의 세기를 결정하였다. 본 논문에서는 애매어와 해소어를 이용하여 벡터의 차원을 확장하여 문서 분류의 정밀도를 향상시키는 방법을 제안하였다.
단어 의미 분별 문제는 문장에서 어떤 단어가 사전에 가지고 있는 여러 가지 의미 중 정확한 의미를 파악하는 문제이다. 우리는 이 문제를 다중 클래스 분류 문제로 간주하고 지지벡터기계를 이용하여 분류한다. 세종 의미 부착 말뭉치에서 추출한 의미 중의성 단어의 문맥 단어를 두 가지 벡터 공간에 표현한다. 첫 번째는 문맥 단어들로 이뤄진 벡터 공간이고 이진 가중치를 사용한다. 두 번째는 문맥 단어의 윈도우 크기에 따라 문맥 단어를 단어 임베딩 모델로 사상한 벡터 공간이다. 실험결과, 문맥 단어 벡터를 사용하였을 때 약 87.0%, 단어 임베딩을 사용하였을 때 약 86.0%의 정확도를 얻었다.
자연어처리에 딥 러닝을 적용하기 위해 사용되는 Word embedding은 단어를 벡터 공간상에 표현하는 것으로 차원축소 효과와 더불어 유사한 의미의 단어는 유사한 벡터 값을 갖는다는 장점이 있다. 이러한 word embedding은 대용량 코퍼스를 학습해야 좋은 성능을 얻을 수 있기 때문에 기존에 많이 사용되던 word2vec 모델은 대용량 코퍼스 학습을 위해 모델을 단순화 하여 주로 단어의 등장 비율에 중점적으로 맞추어 학습하게 되어 단어의 위치 정보를 이용하지 않는다는 단점이 있다. 본 논문에서는 기존의 word embedding 학습 모델을 단어의 위치정보를 이용하여 학습 할 수 있도록 수정하였다. 실험 결과 단어의 위치정보를 이용하여 word embedding을 학습 하였을 경우 word-analogy의 syntactic 성능이 크게 향상되며 어순이 바뀔 수 있는 한국어에서 특히 큰 효과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.