• 제목/요약/키워드: 단어 검색

검색결과 560건 처리시간 0.034초

음절 빈도를 이용한 외래어 명사의 인식 (Recognition of Foreign Nouns using Syllable Frequency)

  • 강승식;전영진
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 추계학술발표대회(상)
    • /
    • pp.408-411
    • /
    • 2003
  • 정보 검색에서 우리가 자주 쓰는 단어는 표준어인 경우도 있고 통신어인 경우도 있고 외국어인 경우도 있다. 그러나 표준어가 아닌 다른 언어로 검색을 하면 다른 결과가 나타날 수 있다. 예를 들어 컴퓨터에 관한 정보를 찾을 때 ‘컴퓨타’로 검색을 하면 다른 검색 결과가 나오게 된다. 우리나라에서 현재 쓰이고 있는 말들은 이런 애매한 발음의 외래어가 많이 생성되고 소멸된다. 그러므로 이런 외래어들을 전부 사전에 등록할 수는 없고 설사 등록한다 하더라도 용량과 검색시간만 늘어나게 된다. 본 논문에서는 검색엔진에서 이런 외래어에 대한 인식 성능을 높이기 위해 외래어 사전 없이 외래어를 인식하는 방안을 제시한다.

  • PDF

양방향 검색을 지원하는 전자사전 구조의 설계 및 구현 (A Design and Implementation of Electronic Dictionary for support bidirectional searching)

  • 김철수;박인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.367-370
    • /
    • 2000
  • 본 논문에서는 빠른 검색 시간을 가지면서 단어의 역문자열도 검색할 수 있는 사전 구조를 설계하고 구현한다. 빠른 검색 시간을 지원하고, 역문자열 검색을 효율적으로 하기 위해 트라이 구조를 이용하였으며 트라이 성질 잘 표현하는 배열을 이용한 구현 방법을 사용하였다. 이 사전 구조는 형태소분석, 정보검색, 음성인식 및 문자 인식 과정 등 다양한 분야에서 유용하게 이용할 수 있다.

  • PDF

Okapi BM25 단어 가중치법 적용을 통한 문서 범주화의 성능 향상 (A Research on Enhancement of Text Categorization Performance by using Okapi BM25 Word Weight Method)

  • 이용훈;이상범
    • 한국산학기술학회논문지
    • /
    • 제11권12호
    • /
    • pp.5089-5096
    • /
    • 2010
  • 문서 범주화는 정보검색 시스템의 중요한 기능중의 하나로 문서들을 어떤 기준에 의해 그룹화를 하는 것을 말한다. 범주화의 일반적인 방법은 대상 문서에서 중요한 단어들을 추출하고 가중치를 부여한 후에 분류 알고리즘에 따라 문서를 분류한다. 따라서 성능과 정확성은 분류 알고리즘에 의해 결정됨으로 알고리즘의 효율성이 중요하다. 본 논문에서는 단어 가중치 계산 방법을 개선하여 문서분류 성능을 향상시키는 것을 소개하였다. Okapi BM25 단어 가중치법은 일반적인 정보검색분야에서 사용되어 검색 결과에 좋은 결과를 보여주고 있다. 이를 적용하여 문서 범주화에서도 좋은 성능을 보이는지를 실험하였다. 비교한 단어 가중치법에는 가장 일반적인 TF-IDF법와 문서분류에 최적화된 가중치법 TF-ICF법, 그리고 문서요약에서 많이 사용되는 TF-ISF법을 이용하여 4가지 가중치법에 따라 결과를 측정하였다. 실험에 사용한 문서로는 Reuter-21578 문서를 사용하였으며 분류기 알고리즘으로는 Support Vector Machine(SVM)와 K-Nearest Neighbor(KNN)알고리즘을 사용하여 실험하였다. 사용된 가중치법 중 Okapi BM25 법이 가장 좋은 성능을 보였다.

문장 및 단어 중요도를 통한 한국어 문서 연관 이미지 검색 (Relevant Image Retrieval of Korean Documents based on Sentence and Word Importance)

  • 김남규;강신재
    • 한국산학기술학회논문지
    • /
    • 제20권3호
    • /
    • pp.43-48
    • /
    • 2019
  • 텍스트로만 이루어진 글에서 알지 못하는 단어가 나온다면, 글을 읽는 도중 집중이 되지 않고 내용을 이해함에 있어 어려움이 생긴다. 또한 이미 알고 있는 단어라도 아이들의 경우 경험이 적기 때문에 글에서 상황을 묘사하는 표현이 생소하거나 애매하다면 머릿속에 떠올리기 힘들다. 이에 본 논문에서는 글을 이해를 돕고 독자의 흥미를 증가시키기 위해서 글의 텍스트들을 분석하여 중요하다고 판단되는 내용을 선택하고, 이 내용과 가장 관련 있는 이미지를 웹에서 자동으로 가져와 연결하여 보여주는 시스템을 구현하고자 한다. 시스템의 구현은 글을 문단 단위로 나누어 글을 분석하고, 문단마다 중요한 문장을 선택한 후, 중요한 문장 내에서 이 문장을 가장 잘 표현할 수 있는 중요한 단어들을 선택하여 웹에서 연관 이미지를 검색하고, 검색된 이미지 결과를 이전에 나눈 각 문단마다 연결시켜준다. 실험으로 글에서 중요한 문장을 선택하는 방법과 문장 내 중요한 단어를 선택하는 방법을 제시하였다. 실험한 결과, 선택된 이미지 3개와 해당 중요 문장과의 연관 여부를 정확률로 평가하였을 때 60%의 성능을 얻을 수 있었다.

질의 내부 단어 인접도를 이용한 검색 효율 향상 기법 (A Search Efficiency Improvement Method using Internal Contiguity in Query Terms)

  • 윤성웅;채진기;이상훈
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권2호
    • /
    • pp.192-198
    • /
    • 2008
  • 수많은 웹 정보 중에서 사용자가 원하는 정보를 찾아내는 것은 매우 어렵다. 검색 엔진은 웹정보를 요약하였다가 사용자의 질의에 따라 상대적 중요도와 정보의 적합도를 반영한 검색순위를 제공한다. 그러나 이 순위는 개별 사용자가 원하는 정보를 상위 순위에 보여주는데 제한이 있다. 본 논문에서는 사용자의 검색 의도가 질의에 가장 잘 나타난다고 보고 질의의 의미를 잘 반영하는 웹 정보를 선택적으로 상위 순위화하기 위하여 질의 내부의 단어 인접도를 이용한 재순위화 방법을 제시하였다. 실험 결과 매우 간단한 방법으로 사용자가 요구하는 정보를 75.8%의 확률로 찾아낼 수 있으며, 선별된 정보들의 선택적인 순위 상승으로 $13{\sim}20%$의 검색 효율 향상을 기대할 수 있다.

한-영 교차언어 정보검색에서 상호정보를 이용한 질의 변환 모호성 해소 및 가중치 부여 방법 (A Disambiguation and Weighting Method using Mutual Information for Query Translation in Korean-to-English Cross-Language IR)

  • 장명길;맹성현;박세영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.55-62
    • /
    • 1999
  • 교차언어 문서검색에서는 단일언어 문서 상황을 만들기 위하여 질의나 문서를 다른 언어로 변환하게 되는데, 일반적으로 간단하면서도 실용적인 질의 변환의 방법을 주로 사용하고 있다. 하지만 단순한 대역 사전을 사용한 질의 변환의 경우에 변환 모호성 때문에 40% 이상의 검색 효과의 감소를 가져온다. 본 논문에서는 이러한 변환 모호성을 해결하기 위하여 대역 코퍼스로부터 추출한 상호 정보를 이용하는 단순하지만 효과적인 사전 기반 질의 변환 방법을 제안한다. 본 연구에서는 변환 모호성으로 발생한 다수의 후보들에서 가장 좋은 후보를 선택하는 모호성 해소 뿐 아니라 후보 단어들에 적절히 가중치를 부여하는 방법을 사용한다. 본 질의 변환 방법은 단순히 가장 큰 상호 정보의 단어를 선택하여 모호성 해소만을 적용하는 방법과 Krushall의 최소 스패닝 트리 구성과 유사한 방법으로 상호 정보가 큰 순서대로 간선들을 연결하여 모호성 해소와 가중치 부여를 적용하는 방법들과 질의 변환의 검색 효과를 비교한다. 본 질의 변환 방법은 TREC-6 교차언어 문서검색 환경의 실험에서 단일 언어 문서검색의 경우의 85%, 수작업 모호성 해소의 경우의 96%에 도달하는 성능을 얻었다.

  • PDF

구문형태소를 이용한 색인어 추출 (Index Extraction Using Syntactic Morpheme)

  • 황이규;이근용;김남수;이용석
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2000년도 한글 및 한국어 정보처리
    • /
    • pp.26-30
    • /
    • 2000
  • 문서를 대표하는 단어를 추출하는 색인어 추출은 정보검색 시스템의 질을 좌우한다. 대부분의 색인어 추출 시스템은 명사를 추출하고 있으며, 가능한 모든 명사를 추출하고 있다. 이러한 방법은 불필요한 단어가 그 문장을 대표하는 색인어로 추출될 가능성이 높으며, 이는 정보 검색 시스템의 효율을 저하시킨다. 이를 해결하기 위해 품사 태깅이나 구문 해석 단계 등을 통해 불필요한 후보를 제거할 수 있지만, 태거를 구축하거나 구문 해석을 위해서는 많은 비용과 시간이 필요하다. 본 논문에서는 구문 형태소 단위의 형태소 해석에 기반한 색인어 추출 방법을 제안한다. 구문 형태소는 통사적/의미적으로 강한 공기 관계를 가지면서 문장에서 하나의 통사적 단위나 자질의 단위로 표현되기 때문에 구문 형태소내에 포함된 단어열들은 대부분 색인어가 될 수 없다. 이러한 방법을 이용하여, 형태소 해석 결과를 이용한 색인어 추출에서 발생하는 색인 오류를 제거함으로써 색인기의 성능을 높이는 방법을 제안한다.

  • PDF

그래프 기반의 상호 중요도 측정 기법을 이용한 영역별 개체명 자동 추출 (Automatic Named Entities Extraction Using the Graph-based Measurement Technique of the Mutual Importance)

  • 배상준;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.17-22
    • /
    • 2008
  • 본 논문에서는 영역별로 자동으로 개체명을 추출하기 위하여 씨앗단어를 이용하고, 웹페이지와 개체명 후보들 간의 상호 중요도를 측정하여 개체명 후보들의 순위를 정하는 방식을 제안한다. 제안된 방식은 크게 세 단계에 의해서 수행되어 지는데 먼저 씨앗단어 정보를 이용하여 웹페이지를 검색하고, 검색되어진 웹 페이지와 씨앗단어 정보를 이용하여 패턴 규칙을 추출한다. 추출된 패턴 규칙을 웹페이지에 적용하여 개체명 후보들을 추출하고 추출된 후보들과 웹페이지 사이의 상호 중요도를 재귀적으로 계산하여 최종적으로 개체명 후보들의 순위가 정해 진다. 한국어와 영어 개체명 영역에 제안된 기법을 적용하여 실험한 결과 한국어에서는 78.72%의 MAP를 얻을 수 있었고, 영어에서는 96.48%의 MAP를 얻었다. 특히 영어 개체명 인식에서의 성능은 구글에서 제공하고 있는 구글셋의 결과보다도 높은 성능을 보였다.

  • PDF

연관 어휘 추출을 통한 질의어 관련 이슈 탐지 (Query Related Issue Detection using Related Term Extraction)

  • 김제상;김동성;조효근;이현아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2013년도 제25회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.133-136
    • /
    • 2013
  • 근래 트위터와 페이스북 등의 SNS(Social Network Service)에서 일반 대중의 관심사나 트렌드 등의 이슈를 탐지하는 많은 연구가 이루어지고 있다. 본 논문에서는 검색어에 대한 연관 어휘 추출을 통해 검색어에 연관된 이슈나 화제를 트위터에서 추출하기 위한 방법을 제안한다. 본 논문에서는 연관성이 높은 단어는 서로 가깝게 발생할 것으로 기대하고, 단어 간 거리가 가까울수록, 공기빈도가 높을수록 커지는 단어연관도 계산법을 제안한다. 연관도 값이 임계치를 넘는 어휘를 연관 어휘로 보고 네트워크의 형태로 관련 이슈를 제시한다.

  • PDF

구문형태소를 이용한 색인어 추출 (Index Extraction Using Syntactic Morpheme)

  • 황이규;이근용;김남수;이용석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2000년도 제12회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.26-30
    • /
    • 2000
  • 문서를 대표하는 단어를 추출하는 색인어 추출은 정보검색 시스템의 질을 좌우한다. 대부분의 색인어 추출 시스템은 명사를 추출하고 있으며, 가능한 모든 명사를 추출하고 있다. 이러한 방법은 불필요한 단어가 그 문장을 대표하는 색인어로 추출될 가능성이 높으며, 이는 정보 검색 시스템의 효율을 저하시킨다. 이를 해결하기 위해 품사 태깅이나 구문 해석 단계 등을 통해 불필요한 후보를 제거할 수 있지만, 태거를 구축하거나 구문 해석을 위해서는 많은 비용과 시간이 필요하다. 본 논문에서는 구문 형태소 단위의 형태소 해석에 기반한 색인어 추출 방법을 제안한다. 구문 형태소는 통사적/의미적으로 강한 공기 관계를 가지면서 문장에서 하나의 통사적 단위나 자질의 단위로 표현되기 때문에 구문 형태소내에 포함된 단어열들은 대부분 색인어가 될 수 없다. 이러한 방법을 이용하여, 형태소 해석 결과를 이용한 색인어 추출에서 발생하는 색인 오류를 제거함으로써 색인기의 성능을 높이는 방법을 제안한다.

  • PDF