Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.488-490
/
2011
본 논문에서는 문서 영상에서 글자 분할 및 인식이 필요 없는 단어 검색 알고리즘을 제안한다. 글자 분할을 하지 않고 검색하기 위해 영상 검색에 사용되는 SIFT특징을 이용하였다. 제안하는 알고리즘은 사용자가 입력한 질의어를 질의 영상으로 변환하고, 질의 영상에서 SIFT특징을 추출한다. 추출된 특징은 문서영상에서 추출한 특징과 매칭을 통해 매칭점 쌍을 생성한다. 생성된 매칭점 쌍들을 군집화 조건에 따라 군집화 한다. 군집화는 질의 영상과 지리적 분포가 유사하게 군집화 되도록 설계되었다. 생성된 군집은 군집에 포함된 특징점의 개수가 많을수록 질의 영상과 유사하다. 따라서 N개 이상의 원소를 가지는 군집을 결과로 출력한다. 실험한 결과 제안하는 알고리즘의 가능성을 확인할 수 있었다.
협력적 여과 시스템은 사용자가 검색하고 읽었던 웹문서를 기반으로 사용자 군집을 생성하여 웹문서의 정확한 추천을 가능하게 한다. 이러한 목적으로 설계된 다양한 알고리즘이 있으나 속도가 느리거나 정확도가 낮다는 등의 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위하여 협력적 여과 시스템을 위한 효과적인 사용자 군집 알고리즘인 CUG알고리즘은 사용자 군집을 생성하기 위해 Apriori 알고리즘, Native Bayes 알고리즘을 이용한다. Apriori 알고리즘은 연관 단어 지식 베이스를 구축하고, Native Bayes 알고리즘은 구축된 연관 단어 지식 베이스에 가중치를 추가하며, 사용자가 검색하여 읽은 웹문서를 클래스별로 분류한다. CUG 알고리즘은 분류된 웹문서를 기반으로 하여 사용자 군집을 만든다. 이러한 방법으로 설계된 CUG 알고리즘은 사용자들이 사용할 문서를 미리 검색하여 저장함에 의해 정보검색의 효율성을 향상시키는데 사용될 수 있다. 본 논문에서 설계한 CUG 알고리즘의 선능을 평가하기 위하여 기존의 K-means 방법과 Gibbs샘플링 방법에 의한 군집과 비교한다.
Proceedings of the Korean Information Science Society Conference
/
2003.10a
/
pp.31-33
/
2003
웹은 사람만이 읽을 수 있는 자연언어 문장들로 구성되어있다. 웹을 기계가 이해할 수 있게 하기 위해 의미적 표기로 구성되어야 한다. 광대한 웹의 성격상 수작업으로 이를 해결할 수는 없다. 따라서 본 연구에서는 링크 파서 및 개념그래프를 사용하여 자연어 문장을 지식표현으로 변환하고 이에 대한 검색을 다룬다. 기존의 연구에서는 3쌍으로 이루어진 지식표현과 검색으로 접근하고 있다. 그러나 이 경우 각 구(Phrase) 사이에 관계를 표현할 수가 없다. 또한 동의어 및 다의어에 대한 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해 개념그래프를 사용하여 단어 사이의 의미를 표현하며 동의어 및 다의어 문제를 해결하기 위해 다중 단어로 된 동의어 즉 동일구(Paraphrase)를 사용한다. 이 경우 의미검색에서 다의어 및 동의어 문제가 개선됨을 보였다.
정보의 양이 많아지면서 정보 검색 시스템에 검색 결과를 자동으로 구조화하는 계층적 클러스터링을 적용하는 시도가 늘고 있다. 계층적 클러스터링은 문서 간의 유사도를 통해 클러스터를 계층 구조로 만들어 검색 성능을 높이고 결과를 사용자에게 이해하기 쉽게 보여준다. 계층 구조는 검색 결과를 요약하는 것이기 때문에 클러스터의 내용을 효과적으로 함축할 수 있는 대표어의 선정이 중요하다. 각 클러스터의 대표어를 선정하기 위해 대표어에 명사인 단어만 추출하고 상위 클러스터 대표어에 사용된 단어는 하위 클러스터에 사용하지 않는 방법을 적용하여 대표어의 질을 높였다.
Journal of the Korean Society for information Management
/
v.27
no.3
/
pp.227-239
/
2010
Opinion retrieval is to retrieve items which are relevant to the user information need topically and include opinion about the topic. This paper aims to find a method to represent user information need for effective opinion retrieval and to analyze the combination methods for opinion features through various experiments. The experiments are carried out in the inference network framework using the Blogs06 collection and 100 TREC test topics. The results show that our suggested representation method based on hidden 'opinion' concept is effective, and the compact model with very small opinion lexicon shows the comparable performance to the previous model on the same test data set.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.175-178
/
2014
다양한 언론사로부터 기사를 제공받아 서비스하는 인터넷 포털의 뉴스에서는 수많은 중복 기사가 실시간으로 등록된다. 이로 인하여 인터넷 포털에서 관심 있는 주제의 기사를 검색하여 찾아보려는 경우 검색키워드를 포함한 기사의 수가 지나치게 많아 원하는 정보를 적절하게 얻기 어렵다. 본 논문에서는 이러한 문제점을 해결하기 위해서 검색 기사 중 유사한 문서를 군집화하고 군집에 대한 다중문서요약을 사용자에게 제시하여 검색된 기사를 효율적으로 활용할 수 있는 방법을 제시한다. 다중문서 요약에서는 뉴스 기사에 적합한 단어 가중치인 분별도(discriminability)를 제안하여 사용하여 군집화된 기사로부터 유사 문장을 군집한다. 시스템에서는 군집된 기사의 대표 문장 군집에서 대표 문장, 즉 키워드에 대한 주제별 기사의 요약문을 결과로 제시하여, 효율적인 뉴스 검색을 지원한다.
Annual Conference on Human and Language Technology
/
2009.10a
/
pp.165-169
/
2009
오늘날 인터넷 검색은 하루가 다르게 발전되고 있다. 주로 키워드 매칭에 의존을 둔 지금의 검색 서비스들은 사용자 중심의 아이템들을 개발해 정보검색의 경과시간 및 결과의 분류면에서 우수함을 보여주고 있다. 질의어의 의미에 유사한 검색은 아직은 발전하는 단계로, 내용에 기반을 둔 검색 환경에 초점이 맞춰지고 있다. 이와 관련하여 행렬의 특이치 분해(SVD)를 이용한 잠재적 의미 색인 기법(LSI)을 본 연구에서 다루고자 한다. 구축한 시스템의 성능 평가는 재현도 계산으로 비교되었는데 작은 크기의 특이값(singular value)들 생략에 의한 SVD의 성능과 그것을 재이용, 질의어에 대한 의미 구조상 근접한 용어들을 찾아 질의어를 확장한 후 적합한 문서들의 검색을 사용한 특이값 개수, 유사단어 확장 개수를 달리하여 실험하였다. 실험 결과, 특이값 2개를 사용한 잠재적 의미 색인이 특이값 3개를 사용한 잠재적 의미 색인보다 보다 나은 성능을 보였다. 그리고 조건을 달리한 모든 잠재적 의미 색인의 경우 단어 매칭에 의한 적합문서 검색보다 별 뚜렷한 나은 결과는 보이지 않았다. 하지만 의미적으로 관계가 깊은 유사어들을 찾아냈고, 의미적으로 가장 관계 깊은 문서를 대부분의 경우에서 순위 1위로 찾아내는 부분적 우수함을 보였다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.10
no.8
/
pp.1986-1992
/
2009
A user often searches a data by inputting a variant such as the abbreviation or substring of a word, or a misspelled word. The simple approach to the searching for variants is to build a variants dictionary. However, it entails enormous cost and time and can not handle variants by misspelling. Approximate searching, searching by approximate string matching, is a good approach to the searching. A problem in the approach is that it cannot handle variants by abbreviations. This paper propose a method for searching various variants including abbreviations and misspelled words, by using the trie indexing. First, this paper shows a variant matching method with the calculation of path weighted-metric. In addition, it provides variant searching algorithm to reduce the search time.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.41-42
/
2018
텍스트 문서 영상으로부터 단어를 검출하고, LLAH(locally likely arrangement hashing) 알고리즘을 이용하여 이웃 단어 사이의 기하 관계를 표현하는 특징 벡터를 계산한 후, 특징 벡터를 비교함으로써 텍스트 문서를 효과적으로 인식하거나 검색할 수 있다. 그러나, 이는 문서 내 각 단어가 정확하고 강건하게 검출된다는 전제를 필요로 한다. 본 논문에서는 텍스트 내 각 라인을 검출하고, 각 라인 내에서 단어 사이의 간격과 글자 사이의 간격을 깊은 신경망(deep neural network)을 이용하여 학습하고 분류함으로써, 보다 카메라와 텍스트 문서 사이의 거리나 방향이 동적으로 변하는 조건에서 각 단어를 강건하게 검출하는 방법을 제안한다. 모바일 환경에서 제안된 방법을 구현하였으며, 실험을 통해 단어 사이의 간격과 글자 사이의 간격을 92.5%의 정확도로 구별할 수 있으며, 이를 통해 동적인 환경에서 단어 검출의 강건성을 크게 개선할 수 있음을 확인하였다.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.3
/
pp.523-530
/
2024
Online, such as web pages and digital documents, have the ability to search for specific words or specific phrases that users want to search in real time. Printed materials such as printed books and reference books often have difficulty finding specific words or specific phrases in real time. This paper describes the development of a deep learning model for detecting text and a real-time character detection system using OCR for recognizing text. This study proposes a method of detecting text using the EAST model, a method of recognizing the detected text using EasyOCR, and a method of expressing the recognized text as a bounding box by comparing a specific word or specific phrase that the user wants to search for. Through this system, users expect to find specific words or phrases they want to search in real time in print, such as books and reference books, and find necessary information easily and quickly.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.