• Title/Summary/Keyword: 단어 검색

Search Result 560, Processing Time 0.034 seconds

Word Spotting Algorithms Using SIFT in Document Images (SIFT를 이용한 문서 영상에서의 단어 검색 알고리즘)

  • Lee, Duk-Ryong;Jeon, Hyo-Jong;Oh, Il-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.488-490
    • /
    • 2011
  • 본 논문에서는 문서 영상에서 글자 분할 및 인식이 필요 없는 단어 검색 알고리즘을 제안한다. 글자 분할을 하지 않고 검색하기 위해 영상 검색에 사용되는 SIFT특징을 이용하였다. 제안하는 알고리즘은 사용자가 입력한 질의어를 질의 영상으로 변환하고, 질의 영상에서 SIFT특징을 추출한다. 추출된 특징은 문서영상에서 추출한 특징과 매칭을 통해 매칭점 쌍을 생성한다. 생성된 매칭점 쌍들을 군집화 조건에 따라 군집화 한다. 군집화는 질의 영상과 지리적 분포가 유사하게 군집화 되도록 설계되었다. 생성된 군집은 군집에 포함된 특징점의 개수가 많을수록 질의 영상과 유사하다. 따라서 N개 이상의 원소를 가지는 군집을 결과로 출력한다. 실험한 결과 제안하는 알고리즘의 가능성을 확인할 수 있었다.

Effective User Clustering Algorithm for Collaborative Filtering System (협력적 여과 시스템을 위한 효과적인 사용자 군집 알고리즘)

  • Go, Su-Jeong;Im, Gi-Uk;Lee, Jeong-Hyeon
    • The KIPS Transactions:PartB
    • /
    • v.8B no.2
    • /
    • pp.144-154
    • /
    • 2001
  • 협력적 여과 시스템은 사용자가 검색하고 읽었던 웹문서를 기반으로 사용자 군집을 생성하여 웹문서의 정확한 추천을 가능하게 한다. 이러한 목적으로 설계된 다양한 알고리즘이 있으나 속도가 느리거나 정확도가 낮다는 등의 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위하여 협력적 여과 시스템을 위한 효과적인 사용자 군집 알고리즘인 CUG알고리즘은 사용자 군집을 생성하기 위해 Apriori 알고리즘, Native Bayes 알고리즘을 이용한다. Apriori 알고리즘은 연관 단어 지식 베이스를 구축하고, Native Bayes 알고리즘은 구축된 연관 단어 지식 베이스에 가중치를 추가하며, 사용자가 검색하여 읽은 웹문서를 클래스별로 분류한다. CUG 알고리즘은 분류된 웹문서를 기반으로 하여 사용자 군집을 만든다. 이러한 방법으로 설계된 CUG 알고리즘은 사용자들이 사용할 문서를 미리 검색하여 저장함에 의해 정보검색의 효율성을 향상시키는데 사용될 수 있다. 본 논문에서 설계한 CUG 알고리즘의 선능을 평가하기 위하여 기존의 K-means 방법과 Gibbs샘플링 방법에 의한 군집과 비교한다.

  • PDF

A Study on Knowledge Representation for Semantic Search (의미검색을 위한 지식표현 연구)

  • 김명관;박영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.31-33
    • /
    • 2003
  • 웹은 사람만이 읽을 수 있는 자연언어 문장들로 구성되어있다. 웹을 기계가 이해할 수 있게 하기 위해 의미적 표기로 구성되어야 한다. 광대한 웹의 성격상 수작업으로 이를 해결할 수는 없다. 따라서 본 연구에서는 링크 파서 및 개념그래프를 사용하여 자연어 문장을 지식표현으로 변환하고 이에 대한 검색을 다룬다. 기존의 연구에서는 3쌍으로 이루어진 지식표현과 검색으로 접근하고 있다. 그러나 이 경우 각 구(Phrase) 사이에 관계를 표현할 수가 없다. 또한 동의어 및 다의어에 대한 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해 개념그래프를 사용하여 단어 사이의 의미를 표현하며 동의어 및 다의어 문제를 해결하기 위해 다중 단어로 된 동의어 즉 동일구(Paraphrase)를 사용한다. 이 경우 의미검색에서 다의어 및 동의어 문제가 개선됨을 보였다.

  • PDF

A Study on Cluster Topic Selection in Hierarchical Clustering (계층적 클러스터링에서 분류 대표어 선정에 관한 연구)

  • Yi, Sang-Seon;Lee, Shin-Won;An, Dong-Un;Chung, Sung-Jong
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.669-672
    • /
    • 2004
  • 정보의 양이 많아지면서 정보 검색 시스템에 검색 결과를 자동으로 구조화하는 계층적 클러스터링을 적용하는 시도가 늘고 있다. 계층적 클러스터링은 문서 간의 유사도를 통해 클러스터를 계층 구조로 만들어 검색 성능을 높이고 결과를 사용자에게 이해하기 쉽게 보여준다. 계층 구조는 검색 결과를 요약하는 것이기 때문에 클러스터의 내용을 효과적으로 함축할 수 있는 대표어의 선정이 중요하다. 각 클러스터의 대표어를 선정하기 위해 대표어에 명사인 단어만 추출하고 상위 클러스터 대표어에 사용된 단어는 하위 클러스터에 사용하지 않는 방법을 적용하여 대표어의 질을 높였다.

  • PDF

Experimental Study for Effective Combination of Opinion Features (효과적인 의견 자질 결합을 위한 실험적 연구)

  • Han, Kyoung-Soo
    • Journal of the Korean Society for information Management
    • /
    • v.27 no.3
    • /
    • pp.227-239
    • /
    • 2010
  • Opinion retrieval is to retrieve items which are relevant to the user information need topically and include opinion about the topic. This paper aims to find a method to represent user information need for effective opinion retrieval and to analyze the combination methods for opinion features through various experiments. The experiments are carried out in the inference network framework using the Blogs06 collection and 100 TREC test topics. The results show that our suggested representation method based on hidden 'opinion' concept is effective, and the compact model with very small opinion lexicon shows the comparable performance to the previous model on the same test data set.

Search Resulted News Summarization using Word Discriminability (단어 분별도에 기반한 뉴스 검색 문서 요약)

  • Lee, Sang-Keon;Lee, Hye-Min;Kim, Gi-Ryeong;Seo, Duc-Ho;Lee, Hyun Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.175-178
    • /
    • 2014
  • 다양한 언론사로부터 기사를 제공받아 서비스하는 인터넷 포털의 뉴스에서는 수많은 중복 기사가 실시간으로 등록된다. 이로 인하여 인터넷 포털에서 관심 있는 주제의 기사를 검색하여 찾아보려는 경우 검색키워드를 포함한 기사의 수가 지나치게 많아 원하는 정보를 적절하게 얻기 어렵다. 본 논문에서는 이러한 문제점을 해결하기 위해서 검색 기사 중 유사한 문서를 군집화하고 군집에 대한 다중문서요약을 사용자에게 제시하여 검색된 기사를 효율적으로 활용할 수 있는 방법을 제시한다. 다중문서 요약에서는 뉴스 기사에 적합한 단어 가중치인 분별도(discriminability)를 제안하여 사용하여 군집화된 기사로부터 유사 문장을 군집한다. 시스템에서는 군집된 기사의 대표 문장 군집에서 대표 문장, 즉 키워드에 대한 주제별 기사의 요약문을 결과로 제시하여, 효율적인 뉴스 검색을 지원한다.

  • PDF

Query expansion by Similar words Using LSI (잠재적 의미 색인을 이용한 유사 질의어 확장)

  • Lim, Tae Hun;An, Dong Un;Chung, Seong Jong
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.165-169
    • /
    • 2009
  • 오늘날 인터넷 검색은 하루가 다르게 발전되고 있다. 주로 키워드 매칭에 의존을 둔 지금의 검색 서비스들은 사용자 중심의 아이템들을 개발해 정보검색의 경과시간 및 결과의 분류면에서 우수함을 보여주고 있다. 질의어의 의미에 유사한 검색은 아직은 발전하는 단계로, 내용에 기반을 둔 검색 환경에 초점이 맞춰지고 있다. 이와 관련하여 행렬의 특이치 분해(SVD)를 이용한 잠재적 의미 색인 기법(LSI)을 본 연구에서 다루고자 한다. 구축한 시스템의 성능 평가는 재현도 계산으로 비교되었는데 작은 크기의 특이값(singular value)들 생략에 의한 SVD의 성능과 그것을 재이용, 질의어에 대한 의미 구조상 근접한 용어들을 찾아 질의어를 확장한 후 적합한 문서들의 검색을 사용한 특이값 개수, 유사단어 확장 개수를 달리하여 실험하였다. 실험 결과, 특이값 2개를 사용한 잠재적 의미 색인이 특이값 3개를 사용한 잠재적 의미 색인보다 보다 나은 성능을 보였다. 그리고 조건을 달리한 모든 잠재적 의미 색인의 경우 단어 매칭에 의한 적합문서 검색보다 별 뚜렷한 나은 결과는 보이지 않았다. 하지만 의미적으로 관계가 깊은 유사어들을 찾아냈고, 의미적으로 가장 관계 깊은 문서를 대부분의 경우에서 순위 1위로 찾아내는 부분적 우수함을 보였다.

  • PDF

Searching for Variants Using Trie-Index (트라이 인덱스를 이용한 이형태 검색)

  • Park, In-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1986-1992
    • /
    • 2009
  • A user often searches a data by inputting a variant such as the abbreviation or substring of a word, or a misspelled word. The simple approach to the searching for variants is to build a variants dictionary. However, it entails enormous cost and time and can not handle variants by misspelling. Approximate searching, searching by approximate string matching, is a good approach to the searching. A problem in the approach is that it cannot handle variants by abbreviations. This paper propose a method for searching various variants including abbreviations and misspelled words, by using the trie indexing. First, this paper shows a variant matching method with the calculation of path weighted-metric. In addition, it provides variant searching algorithm to reduce the search time.

Learning-based Word Segmentation for Text Document Recognition (텍스트 문서 인식을 위한 학습 기반 단어 분할)

  • Lomaliza, Jean-Pierre;Moon, Kwang-Seok;Park, Hanhoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.41-42
    • /
    • 2018
  • 텍스트 문서 영상으로부터 단어를 검출하고, LLAH(locally likely arrangement hashing) 알고리즘을 이용하여 이웃 단어 사이의 기하 관계를 표현하는 특징 벡터를 계산한 후, 특징 벡터를 비교함으로써 텍스트 문서를 효과적으로 인식하거나 검색할 수 있다. 그러나, 이는 문서 내 각 단어가 정확하고 강건하게 검출된다는 전제를 필요로 한다. 본 논문에서는 텍스트 내 각 라인을 검출하고, 각 라인 내에서 단어 사이의 간격과 글자 사이의 간격을 깊은 신경망(deep neural network)을 이용하여 학습하고 분류함으로써, 보다 카메라와 텍스트 문서 사이의 거리나 방향이 동적으로 변하는 조건에서 각 단어를 강건하게 검출하는 방법을 제안한다. 모바일 환경에서 제안된 방법을 구현하였으며, 실험을 통해 단어 사이의 간격과 글자 사이의 간격을 92.5%의 정확도로 구별할 수 있으며, 이를 통해 동적인 환경에서 단어 검출의 강건성을 크게 개선할 수 있음을 확인하였다.

  • PDF

Real-time Printed Text Detection System using Deep Learning Model (딥러닝 모델을 활용한 실시간 인쇄물 문자 탐지 시스템)

  • Ye-Jun Choi;Song-Won Kim;Mi-Kyeong Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.523-530
    • /
    • 2024
  • Online, such as web pages and digital documents, have the ability to search for specific words or specific phrases that users want to search in real time. Printed materials such as printed books and reference books often have difficulty finding specific words or specific phrases in real time. This paper describes the development of a deep learning model for detecting text and a real-time character detection system using OCR for recognizing text. This study proposes a method of detecting text using the EAST model, a method of recognizing the detected text using EasyOCR, and a method of expressing the recognized text as a bounding box by comparing a specific word or specific phrase that the user wants to search for. Through this system, users expect to find specific words or phrases they want to search in real time in print, such as books and reference books, and find necessary information easily and quickly.