• Title/Summary/Keyword: 단어인식

Search Result 928, Processing Time 0.027 seconds

Handwritten Korean Word Recognition for Address Recognition (주소 인식 시스템을 위한 필기 한글 단어 인식)

  • 권진욱;이관용;변혜란;이일병
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.201-204
    • /
    • 1997
  • 최근 주소를 자동으로 인식하여 우편물 분류와 같은 업무를 효과적으로 수행하기 위한 연구가 진행되고 있다. 기존 연구들은 낱자 단위의 인식을 수행한 후 사전 형태의 간단한 DB를 통해 최종의 결과를 생성한다. 그러나 한글과 같은 복잡한 구조의 필기 문자에 대한 인식기의 성능은 아직도 미흡한 상태이다. 따라서 낱자 인식기의 성능에 의존하는 현재와 같은 방법으로는 만족할 만한 결과를 얻기가 힘들 것으로 생각된다. 본 논문에서는 낱자 인식 결과에 크게 의존하지 않고 주소에 나타나는 단어의 낱자들 사이간 연결 정보를 이용하여 단어를 인식할 수 있는 시스템을 제안한다. 본 시스템은 통계적 인식기를 사용하여 낱자를 인식하는 부분과 낱자 인식 결과를 조합하여 단어 수준의 인식과정을 통해 최종의 결과를 생성하는 부분으로 구성된다. 통계적 인식기는 Nearest neighborhood 방법을 사용하여 간단한 형태로 구현하였다. 단어인식 모듈은 단어에서 모든 문자간의 관계를 표현할 수 있도록 HMM 모형을 사용하여 어휘정보 네트워크를 구성하고 이를 이용하여 주소에 나타나는 단어를 인식하도록 하였다. PE92 한글 문자 데이터를 이용하여 실험을 수 璿\ulcorner 결과, 통계적 인식기의 성능이 저조함에도 불구하고 HMM을 이용한 어휘정보 네트워크가 이를 보완함으로써 좋은 결과를 얻었다. 이러한 단어 인식 방법을 주소 이외의 다른 단어 집합에 대해서도 쉽게 적용될 수 있을 것으로 예상된다.

  • PDF

Effects of Orthographic Knowledge and Phonological Awareness on Visual Word Decoding and Encoding in Children Aged 5-8 Years (5~8세 아동의 철자지식과 음운인식이 시각적 단어 해독과 부호화에 미치는 영향)

  • Na, Ye-Ju;Ha, Ji-Wan
    • Journal of Digital Convergence
    • /
    • v.14 no.6
    • /
    • pp.535-546
    • /
    • 2016
  • This study examined the relation among orthographic knowledge, phonological awareness, and visual word decoding and encoding abilities. Children aged 5 to 8 years took letter knowledge test, phoneme-grapheme correspondence test, orthographic representation test(regular word and irregular word representation), phonological awareness test(word, syllable and phoneme awareness), word decoding test(regular word and irregular word reading) and word encoding test(regular word and irregular word dictation). The performances of all tasks were significantly different among groups, and there were positive correlations among the tasks. In the word decoding and encoding tests, the variables with the most predictive power were the letter knowledge ability and the orthographic representation ability. It was found that orthographic knowledge more influenced visual word decoding and encoding skills than phonological awareness at these ages.

Off-Line Recognition of Unconstrained Handwritten Korean Words using Over-Segementation and Lexicon Driven Post-Processing Techniques (과다 분리 및 사전 후처리 기법을 이용한 한글이 포함된 무제약 필기 문자열의 오프라인 인식)

  • Jeong, Seon-Hwa;Kim, Su-Hyeong
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.5
    • /
    • pp.647-656
    • /
    • 1999
  • 본 논문에서는 오프라인 무제약 필기 한글 단어를 인식하기 위한 시스템을 제안한다. 제안된 단어 인식 시스템은 크게 다석가지 모듈-문자 분리,조합행렬생성, 특징 추출, 문자인식, 사전 후처리 -로 구성되어 있다. 문자 분리 모듈은 입력된 단어 영상을 하나의 문자보다 더 작은 이미지 조각으로 과다 분리하며 , 조합 행렬 생성모듈에서는 동적 프로그래밍 기법을 이용하여 분리된 이미지 조각들로부터 사전상의 모든 단어들과 대응되는 가능한 모든 조합을 생성한다. 문자인식모듈은 각 그룹에 대하여 일괄적으로 얻어진 특징과 유니그램을 이용하여 문자인식을 수행한다. 마지막으로 사전 후처리 모듈에서는 각 그룹에 대한 문자인식 결과와 단어 사전을 사용하여 입력단어에 대한 최종 인식 결과를 도출한다. 본 문에서 제안한 방법은 문자 분리, 문자 인식 및 후처리를 상호 보완적으로 결합함으로써 한글이 포함된 무제약 필기 문자열을 효과적으로 인식할 수 있다. 제안된 시스템의 성능을 평가하기 위하여 실제 우편 봉투 상에 쓰여진 필기 한글 단어 200개를 대상으로 실험을 하였다. 실험 결과 200개의 단어중 172개의 단어를 정인식하여 86%의 정확도를 얻을 수 있었으며 나머지 28개의 오인식된 단어들을 분석한 결과 대부분의 오류는 문자 인식기의 낮은 신뢰도 때문임을 알 수 있었다. 또한, 하나의 단어를 인식하기 위하여 약 2초가 소요되었다.

Performance Improvement of Vocabulary Independent Speech Recognizer using Back-Off Method on Subword Model (음소 모델의 Back-Off 기법을 이용한 어휘독립 음성인식기의 성능개선)

  • Koo Dong-Ook;choi Joon Ju;Oh Yung-Hwan
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.19-22
    • /
    • 2000
  • 어휘독립 음성인식이란 음향학적 모델 훈련에 사용하지 않은 어휘들을 인식하는 것이다. 단어모델을 이용한 어휘독립 음성인식 시스템은 발음표기로 변환된 인식대상어휘에 대하여 문맥 종속형 부단어(context dependent subword) 단위로 훈련된 모델을 연결하여 단어 모델을 만들고 이 단어 모델로 인식을 수행한다. 이러한 시스템의 경우 훈련과정에서 나타나지 않는 문맥 종속형 부단어가 인식대상어휘에서 나타나게 되고, 따라서 정확한 단어모델을 구성할 수 없다는 문제점이 있다 본 논문에서는 문맥 종속형 부단어 구분의 계층화를 통한 back-off 선택 방법을 이용하여 새롭게 나타난 문맥 종속형 부단어 대신 연결될 부단어 모델을 찾아내는 방법을 제안한다 제안된 선택 방법은 새롭게 나타난 문맥 종속형 부단어를 포함하는 상위의 부단어를 찾아내는 방법이다. 실험 결과 10단어 세트에서 $97.5\%$ 50단어 세트에서$90.16\%$ 100 단어 세트에서 $82.08\%$의 인식률을 얻었다.

  • PDF

A construction of vowel string dictionary for unlimited word speech recognition (무제한 단어 음성인식을 위한 모음열 사전의 구축)

  • 김동환;윤재선;홍광석
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.177-180
    • /
    • 2000
  • 기존의 제한적 단어 인식과는 달리 무제한 단어 음성인식에 있어서는 방대한 용량의 단어 모델을 참조로 인식이 이루어지게 되어, 참조모델과 입력패턴과의 비교를 위한 탐색시간이 너무 길어지게 된다. 본 논문에서 제한하는 방법은 무제한 단어 음성인식 시스템을 구축하기 위해 선행되어야 하는 모음열 사전을 구축하는 것이다. 음성인식시 입력패턴과 참조모델에 속한 모든 단어와의 비교를 수행하지 않고, 입력패턴의 모음열을 인식한 후, 인식된 모음열 단어들만을 참조모델에서 인식 후보로 두어 인식을 수행하게 하여 시간적인 측면에서의 효율성을 기하는 것이다. 결과적으로 본 연구 방법은 무제한 단어 음성인식에서의 실시간 처리라는 점에 주 목적을 두었다.

  • PDF

The recognition of word by continuous speech recognition technic (연속 음성 인식 기법을 이용한 단어 음성 인식)

  • 조영훈
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.91-94
    • /
    • 1998
  • 우리만은 영어와는 달리 단어를 공백으로만 구분할 수 없다. 그러므로 대용량 어휘를 갖는 연속 음성을 인식하기 위한 언어모델을 만들기가 매우 어렵다. N-gram의 언어 모델을 우리말 문장에 적용하기 위해 하나의 문장을 한 단어로 구성하여 처리하였다. 우리의 인식시스템을 평가하기 위하여 시스템 공학 연구소에서 제공한 음성을 대상으로 인식률을 계산하였다. 단어의 종류는 452개이며 한명이 이 단어들을 2번씩 발음하고 총70명이 발음한 총 63,280개의 단어에 대하여 92.8%의 인식률을 얻었다. 일간지 사설로부터 추출한 단어를 대상으로 발음 사전을 10K 크기로 만들었다. 음성 모델은 uniphone을 사용하였다.

  • PDF

Phoneme-based Recognition of Korean Speech Using HMM(Hidden Markov Model) and Genetic Algorithm (HMM과 GA를 이용한 한국어 음성의 음소단위 인식)

  • 박준하;조성원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.291-295
    • /
    • 1997
  • 현재에 주로 개발되어 상용화가 시작되고 있는 음성인식 시스템의 대부분은 단어인식을 기분으로 하는 시스템으로 적용 단어수를 늘려줌으로서 인식범위를 늘일 수 있으나, 그에 따라 검색해야하는 단어수가 늘어남으로서 전체적인 시스템의 속도 및 성능이 저하되는 경향이 있다. 이러한 단점의 극복을 위하여 본 논문에서는 HMM(Hidden Markov Model)과 GA(Genetic Algorithm)를 이용한 한국어 음성의 음소단위 인식 시스템을 구현하였다. 음성 특징으로는 LPC Cepstrum 계수를 사용하였으며, 인식시는 인식대상이 되는 단어에 대하여 GA(Genetic Algorithm)을 통하여 각 음소를 분리하고, 음소단위로 학습된 HMM 파라미터를 적용하여 인식함으로써 각각의 음소별 가능하도록 하는 방법을 제안하였다.

  • PDF

A Study on the Rejection Capability based on Utterance Verification for Speech Recognition (발화 검증에 의한 음성인식 거절기능 연구)

  • 김우성
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.67-70
    • /
    • 1998
  • 본 논문에서는 단어독립 음성인식 시스템을 위한 음성인식 거절(rejection)기능에 대해 기술한다. 음성인식 거절 기능은 음성인식기를 제작할 때 정해놓은 인식대상 단어 이외의 단어가 입력되었을 때 그 단어가 인식할 수 없는 단어임을 알려주는 기능이다. 본 연구에서는 단어독립 음성인식 시스템에 적용될 수 있는 발화 검증 방식에 의해 음성인식 거절 기능을 구현하였다. 특히 유사도를 결정함에 있어서 산술평균, 기하평균, 조화평균을 사용하고 각각을 비교하여, 기하 평균을 사용하는 방식이 우수한 성능을 보임을 알 수 있었다. 음성의 신뢰도(confidence score)를 정규화하기 위해서 Sigmoid 함수를 사용하는데 이 함수의 가중치(weight) 상수의 변화에 대해 인식률을 비교함으로써 가장 적절한 가중치 상수값을 결정하였다. 음성인식 테스트 결과에서는 신뢰도 임계치 값을 구하고 이 값을 사용하여 인식률을 계산하였으며, 거절의 오류까지 포함된 음성인식률은 약 76%였다. 이 연구결과는 현재 한국통신에서 시험 서비스 중인 음성인식 증권정보 안내 시스템에 적용될 예정이다.

  • PDF

The effect of Meungzo and Saemmul fonts on Hangul recognition (명조체와 샘물체 단어모양이 한글인식에 미치는 효과)

  • Kim, Ho-Young;Cheong, Chan-Sup
    • Annual Conference on Human and Language Technology
    • /
    • 1992.10a
    • /
    • pp.259-267
    • /
    • 1992
  • 단어모양이 한글 시각정보처리에 미치는 효과를 알아보기 위해 명조체와 샘물체로 된 한음절 글자, 두음절 단어, 세음절 단어의 정확인식율을 비교하였다. 명조체는 자모의 모양과 크기가 글자의 고정된 사각틀에 맞게 변형되므로 단어모양이 글자의 자모조합 유형과 음절길이에 따라 크게 달라지지 않는다. 이에 반해 샘물체는 자모조합 유형에 따라 글자의 사각틀이 변형되므로 부가적인 단어변별 정보가 단어모양에 포함되며, 음절길이가 증가할 때 단어모양 정보가 명조체에 비해 더욱 두드러진다. 이처럼 서로 구별될 수 있는 명조체와 샘물체 단어의 시각적 구조는 각각 다른 근거에서 한글인식에 영향을 미칠 수 있을 것으로 예상된다. 연구결과, 명조체의 정확인식율이 샘물체보다 높았으며, 음절길이가 증가할 때 명조체와 샘물체에 상관없이 정확인식율이 향상되었다. 본 실험의 결과는 단어의 외곽모양 변이가 영어의 경우보다 한글 시각정보처리에서 상대적으로 덜 중요하다는 것을 시사한다.

  • PDF

A Study on the Recognition-Rate Improvement by the Keyword Spotting System using CM Algorithm (CM 알고리즘을 이용한 핵심어 검출 시스템의 인식률 향상에 관한 연구)

  • Won Jong-Moon;Lee Jung-Suk;Kim Soon-Hyob
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.81-84
    • /
    • 2001
  • 본 논문은 중규모 단어급의 핵심어 검출 시스템에서 인식률 향상을 위해 미등록어 거절(Out-of-Vocabulary rejection) 기능을 제어하기 위한 연구이다. 이것은 핵심어 검출기에서 인식된 결과를 확인하는 과정으로 검증시스템이 구현되기 위해서는 매 음소마다 검증 기능이 필요하고, 이를 위해서 반음소(anti-phoneme model) 모델을 사용하였다. 검증의 역할은 인식기에서 인식된 단어가 등록어인지 미등록어인지 판별하는 것이다. 단어인식기는 비터비 탐색을 하므로, 기본적으로 단어단위로 인식을 하지만 그 인식된 단어는 내부적으로 음소단위로 인식된다. 따라서, 최소 검증 오류를 갖는 반음소 모델을 사용하고, 이를 이용하여 인식된 음소 단위들을 각각의 반음소 모델과 비교하여 통계적인 방법에 의해 신뢰도를 구한다 이 음소단위의 신뢰도를 단어 단위의 신뢰도로 환산하기 위해서 음소단위를 평균 내는 방식 을 취한다. 이렇게 함으로서, 등록어와 미등록어 사이의 분별력을 크게 하여 향상된 인식 성능을 얻었다.

  • PDF