• Title/Summary/Keyword: 단어의 의미

Search Result 929, Processing Time 0.024 seconds

Word Sense Disambiguation Using Word Link and Word Cooccurrence (단어링크와 공기 단어를 이용한 의미중의성 해소)

  • 구영석;나동렬
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.21-27
    • /
    • 2002
  • 본 논문은 문장 안에서 의미 중의성을 갖는 단어가 출현했을 때 그 단어가 어떤 의미로 사용되고 있는지 판별해 주는 방법을 제시하고자 한다. 이를 위해서 먼저 중의적 의미를 가지는 단어의 각 의미 (sense) 마다에 대하여 이 의미를 나타내는 주요단어 즉 종자단어와 연관성이 있는 단어들로 벡터를 구성하여 이 의미를 나타내고자 한다. 종자단어와 말뭉치의 문장을 통하여 연결된 경로를 가진 단어는 이 종자단어에 해당하는 의미를 나타내는 데 기여하는 정보로 본 것이다. 경로는 동일 문장에서 나타나는 두 단어 사이는 링크가 있다고 보고 이러한 링크를 통하여 이루어 질 수 있는 연결 관계를 나타낸다. 이 기법의 장점은 데이터 부족으로 야기되는 문제를 경감시킬 수 있다는 점이다. 실험을 위해 Hantec 품사 부착된 말뭉치를 이용하여 의미정보벡터를 구축하였으며 ETRI 품사 부착된 말뭉치에서 중의적 단어가 포함된 문장을 추출하여 실시하였다. 실험 결과 기존의 방법보다 나은 성능을 보임이 밝혀졌다.

  • PDF

A Word Semantic Similarity Measure Model using Korean Open Dictionary (우리말샘 사전을 이용한 단어 의미 유사도 측정 모델 개발)

  • Kim, Hoyong;Lee, Min-Ho;Seo, Dongmin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.3-4
    • /
    • 2018
  • 단어 의미 유사도 측정은 정보 검색이나 문서 분류와 같이 자연어 처리 분야 문제를 해결하는 데 큰 도움을 준다. 이러한 의미 유사도 측정 문제를 해결하기 위하여 단어의 계층 구조를 사용한 기존 연구들이 있지만 이는 단어의 의미를 고려하고 있지 않아 만족스럽지 못한 결과를 보여주고 있다. 본 논문에서는 국립국어원에서 간행한 표준국어대사전에 50만 어휘가 추가된 우리말샘 사전을 기반으로 하여 한국어 단어에 대한 계층 구조를 파악했다. 그리고 단어의 용례를 word2vec 모델에 학습하여 단어의 문맥적 의미를 파악하고, 단어의 정의문을 sent2vec 모델에 학습하여 단어의 사전적 의미를 파악했다. 또한, 구축된 계층 구조와 학습된 word2vec, sent2vec 모델을 이용하여 한국어 단어 의미 유사도를 측정하는 모델을 제안했다. 마지막으로 성능 평가를 통해 제안하는 모델이 기존 모델보다 향상된 성능을 보임을 입증했다.

  • PDF

Word Ambiguity Resolution for Concept-based Text Classification (개념 기반 문서 분류를 위한 단어 애매성 해소)

  • 강원석;황도삼
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.167-169
    • /
    • 2000
  • 문서 분류 시스템은 문서에 나타난 용어나 개념의 출현 정보를 이용한다. 개념 기반문서분류는 용어를 사용하지 않고 문서의 단어에 나타난 의미를 이용한다. 단어가 중의성을 가지는 경우 그 뜻을 정확히 가리지 않으면 문서에 출현하지 않은 의미를 이용하게 되므로 문서 분류 시스템의 성능이 저하된다. 본 논문은 개념 기반 문서분류를 위하여 단어 애매성 해소를 시도하였다. 문서에 출현된 의미 정보를 이용하여 의미들간의 공기정보를 구하고 이를 이용하여 단어의 애매성을 해소하였다. 단어의 의미정보는 시소러스 도구를 통해 획득하고 의미들간의 공기정보는 의미들간의 동시 출현 정보를 획득하여 구축하였다. 본 시스템은 문서 분류 등 자연어처리 분야에 이용할 수 있어 효용가치가 높다.

  • PDF

Translation Disambiguation Based on 'Word-to-Sense and Sense-to-Word' Relationship (`단어-의미 의미-단어` 관계에 기반한 번역어 선택)

  • Lee Hyun-Ah
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.71-76
    • /
    • 2006
  • To obtain a correctly translated sentence in a machine translation system, we must select target words that not only reflect an appropriate meaning in a source sentence but also make a fluent sentence in a target language. This paper points out that a source language word has various senses and each sense can be mapped into multiple target words, and proposes a new translation disambiguation method based on this 'word-to-sense and sense-to-word' relationship. In my method target words are chosen through disambiguation of a source word sense and selection of a target word. Most of translation disambiguation methods are based on a 'word-to-word' relationship that means they translate a source word directly into a target wort so they require complicate knowledge sources that directly link a source words to target words, which are hard to obtain like bilingual aligned corpora. By combining two sub-problems for each language, knowledge for translation disambiguation can be automatically extracted from knowledge sources for each language that are easy to obtain. In addition, disambiguation results satisfy both fidelity and intelligibility because selected target words have correct meaning and generate naturally composed target sentences.

Korean Word Sense Disambiguation Using BERT (BERT를 이용한 한국어 단어 의미 모호성 해소)

  • Youn, Jun Young;Shin, Hyeong Jin;Park, Jeong Yeon;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.485-487
    • /
    • 2019
  • 단어의 의미 모호성을 해결하기 위한 연구는 오랫동안 지속되어 왔으며, 특히 최근에는 단어 벡터를 이용한 연구가 활발하게 이루어져왔다. 본 논문에서는 문맥 기반 단어 벡터인 BERT를 이용하여 한국어 단어 의미 모호성을 해소하기 위한 방법을 제안하고, 그 실험 결과를 기존의 한국어 단어 의미 모호성 연구 결과와 비교한다.

  • PDF

Semantic transparency effects in the learning of new words: An ERP study (의미 투명성이 단어 학습에 미치는 영향: 사건관련전위 연구)

  • Bae, Sungbong;Yi, Kwangoh;Park, Taejin
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.3
    • /
    • pp.421-439
    • /
    • 2016
  • The present study investigates the effects of semantic transparency on the learning of new words using both behavioral measures and event-related brain potentials. Participants studied novel words with either semantically transparent or opaque definitions while their brain potentials were recorded. Learning performance was assessed with both a lexical decision task and a recall test. The results indicated that transparent novel words were easier to learn than opaque words. More specifically, self-paced learning times were shorter for transparent novel words across three study sessions. Transparent words also elicited reduced N400s compared with opaque words in all sessions. Moreover, lexical decisions to both learned novel words and real words were faster and more accurate within the transparent condition compared to the opaque condition. These results suggest that semantic transparency also plays an important role within word learning, just as within word recognition, further supporting the notion that morphological information is critical within lexical processing.

근접 문맥정보와 대규모 웹 데이터를 이용한 단어 의미 중의성 해소

  • Kang, Sin-Jae;Kang, In-Su
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.208-211
    • /
    • 2009
  • 본 논문은 구글(Google), 워드넷(WordNet)과 같이 공개된 웹 자원과 리소스를 이용한 비교사학습(Unsupervised learning) 방법을 제안하여 단어 의미의 중의성 문제를 해결하고자 한다. 구글 검색 API를 이용하여 단어의 확장된 근접 문맥정보를 추출하고, 워드넷의 계층체계와 synset을 이용하여 단어 의미 구분정보를 자동 추출한 후, 추출된 정보 간 유사도 계산을 통해 중의성을 갖는 단어의 의미를 결정한다.

  • PDF

Word Sense Disambiguation of Korean Verbs Using Weight Information from Context (가중치 정보를 이용한 한국어 동사의 의미 중의성 해소)

  • Lim, Soo-Jong;Park, Young-Ja;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.425-429
    • /
    • 1998
  • 본 논문은 문맥에서 추출한 가중치 정보를 이용한 한국어 동사의 의미 중의성 해소 모델을 제안한다. 중의성이 있는 단어가 쓰인 문장에서 그 단어의 의미 결정에 영향을 주는 단어들로 의미 결정자 벡터를 구성하고, 사전에서 그 단어의 의미 항목에 쓰인 단어들로 의미 항목 벡터를 구성한다. 목적 단어의 의미는 두 벡터간의 유사도 계산에 의해 결정된다. 벡터간의 유사도 계산은 사전에서 추출된 공기 관계와 목적 단어가 속한 문장에서 추출한 거리와 품사정보에 기반한 가중치 정보를 이용하여 이루어진다. 4개의 한국어 동사에 대해 내부실험과 외부실험을 하였다. 내부 실험은 84%의 정확률과 baseline을 기준으로 50%의 성능향상, 외부 실험은 75%의 정확률과 baseline을 기준으로 40 %의 성능향상을 보인다.

  • PDF

Word Sense Classification Using Support Vector Machines (지지벡터기계를 이용한 단어 의미 분류)

  • Park, Jun Hyeok;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.563-568
    • /
    • 2016
  • The word sense disambiguation problem is to find the correct sense of an ambiguous word having multiple senses in a dictionary in a sentence. We regard this problem as a multi-class classification problem and classify the ambiguous word by using Support Vector Machines. Context words of the ambiguous word, which are extracted from Sejong sense tagged corpus, are represented to two kinds of vector space. One vector space is composed of context words vectors having binary weights. The other vector space has vectors where the context words are mapped by word embedding model. After experiments, we acquired accuracy of 87.0% with context word vectors and 86.0% with word embedding model.

Differential Priming Effects for Pictures and Words in Data-driven and Conceptually-driven Processes (처리유형에 따른 그림자극과 단어자극의 점화효과 차이)

  • 김성일;이정모
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.05a
    • /
    • pp.87-92
    • /
    • 2000
  • 이 연구에서는 단어를 지각하게 되면 그 단어에 대한 의미가 자동적으로 활성화되고 그림표상까지도 활성화되지만, 그림을 지각하고 난 후에는 의미표상체계는 활성화되지만 단어의 지각적 표상체계는 활성화되지 않는지를 살펴보고자 하였다. 실험 1과 2에서는 지연시간을 달리하여 그림을 지각적으로 처리를 하게 한 후 단어에 대한 점화효과를 보았으며, 실험 3 에서는 그림을 개념주도적 처리를 하게 한 후 단어에 대한 점화효과 및 암묵적 기억과 재인기억을 비교해 보았다. 실험결과 지각적 판단과제에서는 조건간의 아무런 차이가 없었지만, 의미적 판단과제에서는 동일조건과 그림조건에서의 반응시간이 통제조건을 포함한 기타 조건들에서보다 빠른 것으로 나타났다. 이러한 결과는 의미적 표상체계로부터 단어의 지각적 표상체계까지의 상호작용 통로가 존재하지 않으며, 그림자극이 단어자극의 점화효과에 영향을 주는 이유는 동일한 의미적 표상체계의 활성화가 단어자극의 지각적 표상체계까지 확산되기 때문이 아니라, 그림자극에 대한 의미적 표상체계가 활성화되기 때문이라는 점을 시사한다.

  • PDF