• Title/Summary/Keyword: 단어선택

Search Result 303, Processing Time 0.028 seconds

Translation Disambiguation Based on 'Word-to-Sense and Sense-to-Word' Relationship (`단어-의미 의미-단어` 관계에 기반한 번역어 선택)

  • Lee Hyun-Ah
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.71-76
    • /
    • 2006
  • To obtain a correctly translated sentence in a machine translation system, we must select target words that not only reflect an appropriate meaning in a source sentence but also make a fluent sentence in a target language. This paper points out that a source language word has various senses and each sense can be mapped into multiple target words, and proposes a new translation disambiguation method based on this 'word-to-sense and sense-to-word' relationship. In my method target words are chosen through disambiguation of a source word sense and selection of a target word. Most of translation disambiguation methods are based on a 'word-to-word' relationship that means they translate a source word directly into a target wort so they require complicate knowledge sources that directly link a source words to target words, which are hard to obtain like bilingual aligned corpora. By combining two sub-problems for each language, knowledge for translation disambiguation can be automatically extracted from knowledge sources for each language that are easy to obtain. In addition, disambiguation results satisfy both fidelity and intelligibility because selected target words have correct meaning and generate naturally composed target sentences.

Feature selection for text data via topic modeling (토픽 모형을 이용한 텍스트 데이터의 단어 선택)

  • Woosol, Jang;Ye Eun, Kim;Won, Son
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.6
    • /
    • pp.739-754
    • /
    • 2022
  • Usually, text data consists of many variables, and some of them are closely correlated. Such multi-collinearity often results in inefficient or inaccurate statistical analysis. For supervised learning, one can select features by examining the relationship between target variables and explanatory variables. On the other hand, for unsupervised learning, since target variables are absent, one cannot use such a feature selection procedure as in supervised learning. In this study, we propose a word selection procedure that employs topic models to find latent topics. We substitute topics for the target variables and select terms which show high relevance for each topic. Applying the procedure to real data, we found that the proposed word selection procedure can give clear topic interpretation by removing high-frequency words prevalent in various topics. In addition, we observed that, by applying the selected variables to the classifiers such as naïve Bayes classifiers and support vector machines, the proposed feature selection procedure gives results comparable to those obtained by using class label information.

Context-dependent processing of skilled readers in selecting appropriate meaning of ambiguous words (적절다의의미 선택과정에서 관찰되는 숙련독자의 문맥의존적인 처리특성)

  • 이병택
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.225-230
    • /
    • 2002
  • 연구는 다의어의 문맥통합과정에서 관찰되는 숙련독자와 미숙련독자간의 개인차가 숙련독자의 문맥의존적인 처리특성에서 비롯되는지를 살펴보고자 하였다. 숙련독자의 문맥의존적인 처리특성을 좀 더 직접적으로 검토하기 위해 검사단어 강제선택과제를 고안하여 일련의 실험을 수행하였다. 편중문맥을 사용한 실험 1에서 숙련독자는 다의어의 주도적 의미가 부적절 검사단어로 사용된 실험조건과 무관단어가 부적절 검사단어로 사용된 통제조건간의 선택반응시간에 차이가 없었다. 한편 적절검사단어 선택을 방해하도록 구성된 갈등문맥이 사용된 실험 2에서 숙련독자는 미숙련독자보다 선택반응 시간이 느려서, 숙련독자가 적절검사단어 선택과정에서 더욱 큰 간섭을 경험했음을 보여주었다. 전체적으로 실험의 결과들은 숙련독자의 다의어 처리 특성이 문맥의존적이라고 가정할 때 잘 설명될 수 있는 것으로 보여진다.

  • PDF

Relevance Feedback Experiments for Korean Information Retrieval Systems (한국어 정보검색 시스템을 위한 다양한 적합성 피드백 방법의 실험)

  • Park, Su-Hyeon;Gwon, Hyeok-Cheol
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.5
    • /
    • pp.682-691
    • /
    • 1999
  • 정보검색 시스템의 검색 효율 향상을 위해서 다양한 적합성 피드백 방법이 개발되었다. 그러나 한국어 정보검색 시스템을 위한 적합성 피드백에 대한 연구는 거의 이루어지지 않은 실정이다. 이 논문에서는 기존에 개발된 적합성 피드백 방법을 한국어 정보 시스템에 적용하여 검색 효율을 비교하고, 새로운 적합성 피드백 방법을 개발 적용하여 기존의 방법들과 검색 효율을 비교분석하였다. 적합성 피드백은 원질의문을 확장할 단어 선택과 선택된 단어 가중치 부여로 이루어진다. 원질의문이 입력되면 검색된 적합문서에서 원질의문을 단어와 밀접한 관계가 있는 단어를 선택하기 위하여 가중치를 부가한후, 원질의문에 추가하여 질의문을 확장한다. 이 논문에서는 원질의문 확장을 위한 단어 선택과 단어 가중치 부여를 위해 3가지 값을 사용한다. 첫째, TF는 적합문서 내의 단어 빈도의 총합이다. 둘째, idf는 해당 문서집단의 역문헌빈도이다. 셋째, r/R은 검색된 적합문서 중에서 해당단어가 있는 적합문서의 비율을 나타낸다. TF와 idf는 정보검색 시스템에서 일반적으로 사용되고있는 값이고 r/R은 이 논문에서 제안한 새로운 값이다.

Target Word Selection using Word Similarity based on Latent Semantic Structure in English-Korean Machine Translation (잠재의미구조 기반 단어 유사도에 의한 역어 선택)

  • 장정호;김유섭;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.502-504
    • /
    • 2002
  • 본 논문에서는 대량의 말뭉치에서 추출된 잠재의미에 기반하여 단어간 유사도를 측정하고 이를 영한 기계 번역에서의 역어선택에 적용한다. 잠재의미 추출을 위해서는 latent semantic analysis(LSA)와 probabilistic LSA(PLSA)를 이용한다. 주어진 단어의 역어 선택시 기본적으로 연어(collocation) 사전을 검색하고, 미등록 단어의 경우 등재된 단어 중 해당 단어와 유사도가 높은 항목의 정보를 활용하며 이 때 $textsc{k}$-최근접 이웃 방법이 이용된다. 단어들간의 유사도 계산은 잠재의미 공간상에서 이루어진다. 실험에서, 연어사전만 이용하였을 경우보다 최고 15%의 성능 향상을 보였으며, PLSA에 기반한 방법이 LSA에 의한 방법보다 역어선택 성능 면에서 약간 더 우수하였다.

  • PDF

Implement of Relevance Feedback in "MIRINE" Information Retrieval System ("미리내" 정보검색 시스템에서 Relevance Feedback 구현)

  • Park, Su-Hyun;Park, Se-Jin;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.65-71
    • /
    • 1997
  • 이 논문은 부산대학교 전자계산학과 인공지능 연구실에서 개발한 정보검색 시스템 "미리내"의 적합성 피드백 방법을 분석하고, 그 방법들의 검색 효율을 비교 분석하였다. "미리내"에서 질의문은 자연언어 질의문을 사용하고 재검색을 위한 적합성 피드백은 원질의문에서 검색된 문서 중 이용자가 직접 선택한 적합 문서에서 추출한다. 적합성 피드백은 크게 단어 확장(Term Expansion)을 위한 단어 선택 방법과 추가될 단어에 가중치를 부여하는 단어 가중치 부여(Term Weighting)의 2가지 요소로 이루어진다. 단어 선택을 위해서는 적합 문서에 나타난 단어 빈도합(tf), 역문헌빈도(idf), 적합 문서 중에서 해당 단어가 있는 적합 문서의 비율(r/R) 등의 정보를 이용한다. 단어 가중치 부여 방법으로는 정규화 또는 코사인 함수를 이용하여 부여하였다. 단어확장에는 tfidf가 tfidf(r/R)보다 정확도 면에서 나은 향상율을 보였으나, 30위 내 검색된 적합문서의 수를 비교해 보았을 때 tfidf(r/R)의 정확도가 높았다. 단어 선택 방법에서 계산된 값을 정규화하여 가중치를 부여하였을 때 보다 코사인 함수를 이용하여 가중치를 부여하였을 때 정확도가 높았다. 실험은 KT-Set 2.0 (4391 건), 동아일보 96 년 신문기사(70459 건)를 대상으로 수행하였다.

  • PDF

Neural Based Approach to Keyword Extraction from Documents (문서의 키워드 추출에 대한 신경망 접근)

  • 조태호;서정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.317-319
    • /
    • 2000
  • 문서는 자연어로 구성된 비정형화된 데이터이다. 이를 처리하기 위하여 문서를 정형화된 데이터로 표현하여 저장할 필요가 있는데, 이를 문서 대용물(Document Surrogate)라 한다. 문서 대용물은 대표적으로 인덱싱 과정에 의해 추출된 단어 리스트를 나타낸다. 문서 내의 모든 단어가 내용을 반영하지 않는다. 문서의 내용을 반영하는 중요한 단어만을 선택할 필요가 있다. 이러한 단어를 키워드라 하며, 기존에는 단어의 빈도와 역문서 빈도(Inverse Document Frequency)에 근거한 공식에 의해 키워드를 선택하였다. 실제로 문서내 빈도와 역문서 빈도뿐만 아니라 제목에 포함 여부, 단어의 위치 등도 고려하여야 한다. 이러한 인자를 추가할 경우 이를 수식으로 표현하기에는 복잡하다. 이 논문에서는 이를 단어의 특징으로 추출하여 특징벡터를 형성하고 이를 학습하여 키워드를 선택하는 신경망 모델인 역전파의 접근을 제안한다. 역전파를 이용하여 키워드를 판별한 결과 수식에 의한 경우보다 그 성능이 향상되었음을 보여주고 있다.

  • PDF

Properties of chi-square statistic and information gain for feature selection of imbalanced text data (불균형 텍스트 데이터의 변수 선택에 있어서의 카이제곱통계량과 정보이득의 특징)

  • Mun, Hye In;Son, Won
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • Since a large text corpus contains hundred-thousand unique words, text data is one of the typical large-dimensional data. Therefore, various feature selection methods have been proposed for dimension reduction. Feature selection methods can improve the prediction accuracy. In addition, with reduced data size, computational efficiency also can be achieved. The chi-square statistic and the information gain are two of the most popular measures for identifying interesting terms from text data. In this paper, we investigate the theoretical properties of the chi-square statistic and the information gain. We show that the two filtering metrics share theoretical properties such as non-negativity and convexity. However, they are different from each other in the sense that the information gain is prone to select more negative features than the chi-square statistic in imbalanced text data.

The Comparison of Indicators for Selecting Familiar Labels of Information Items in Web Pages (친숙한 웹 페이지 정보 항목명 선택을 위한 지표 비교)

  • Cho, In-Ho;Kim, Hyoung-Rae
    • Journal of Internet Computing and Services
    • /
    • v.12 no.1
    • /
    • pp.111-118
    • /
    • 2011
  • While sharing information through Internet by Web page or XML, familiar labels of information items will reduce the confusion among users. The advises of the language experts for choosing familiar terms may cost money and time, but an automated Indicator can help a user select right terms without any cost. This paper collects Indicators that can be easily found over Internet and compares the efficiency of them for selecting familiar terms. The collected indicators are the number of words in a term, the frequency used in a related Web sites, and the number of search results in portal sites. The results conclude that the found terms by the frequency matches 76% for women's and 71% for men's, which tells that the frequency can be a reference for selecting familiar terms.

Performance Improvement of Vocabulary Independent Speech Recognizer using Back-Off Method on Subword Model (음소 모델의 Back-Off 기법을 이용한 어휘독립 음성인식기의 성능개선)

  • Koo Dong-Ook;choi Joon Ju;Oh Yung-Hwan
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.19-22
    • /
    • 2000
  • 어휘독립 음성인식이란 음향학적 모델 훈련에 사용하지 않은 어휘들을 인식하는 것이다. 단어모델을 이용한 어휘독립 음성인식 시스템은 발음표기로 변환된 인식대상어휘에 대하여 문맥 종속형 부단어(context dependent subword) 단위로 훈련된 모델을 연결하여 단어 모델을 만들고 이 단어 모델로 인식을 수행한다. 이러한 시스템의 경우 훈련과정에서 나타나지 않는 문맥 종속형 부단어가 인식대상어휘에서 나타나게 되고, 따라서 정확한 단어모델을 구성할 수 없다는 문제점이 있다 본 논문에서는 문맥 종속형 부단어 구분의 계층화를 통한 back-off 선택 방법을 이용하여 새롭게 나타난 문맥 종속형 부단어 대신 연결될 부단어 모델을 찾아내는 방법을 제안한다 제안된 선택 방법은 새롭게 나타난 문맥 종속형 부단어를 포함하는 상위의 부단어를 찾아내는 방법이다. 실험 결과 10단어 세트에서 $97.5\%$ 50단어 세트에서$90.16\%$ 100 단어 세트에서 $82.08\%$의 인식률을 얻었다.

  • PDF