• Title/Summary/Keyword: 단순 부착응력 모델

Search Result 3, Processing Time 0.016 seconds

Bond Slip Relationship between GFRP Plank and Cast-in-place High Strength Concrete (현장타설 고강도콘크리트와 유리섬유 FRP 판 사이의 부착슬립관계에 관한 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2279-2286
    • /
    • 2015
  • Recently it has been actively studied that the use of hybrid GFRP-concrete structure with dual purpose of both a permanent forwork and main tensile reinforcement of GFRP plank. In applying general analysis and design technique to evaluate the performance of hybrid structures with cast-in-place high strength concrete and GFRP plank, it is essential that the characteristics of the bond slip model is identified. In this study a simplified bilinear bond slip model for hybrid structure with GFRP plank and cast-in-place high strength concrete is proposed. Maximum average bond stress of simple bond slip relationship that has been proposed in this study is 3.29MPa, initial slope is 35.66MPa/mm, the total slip is 0.23mm and interfacial fracture energy is 0.37kN/m.

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-256
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Shear Capacity of Reinforced Concrete Continuous T-Beams Externally Strengthened with Wire Rope Units (와이어로프로 외부 보강된 철근콘크리트 연속 T형 보의 전단내력)

  • Yang, Keun-Hyeok;Sim, Jae-Il;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.773-783
    • /
    • 2007
  • A simple unbonded-type shear strengthening technique for reinforced concrete beams using wire rope units is developed. Six two-span continuous T-beams externally strengthened with wire rope units and an unstrengthened control beam were tested. The main variables investigated were the amount and prestressing force of wire rope units. All specimens had the same geometrical dimension and arrangement of internal reinforcement. Influence of the distribution of vertical stresses in beam web owing to the prestressing force of wire rope units on the diagonal shear cracking load and the ultimate shear capacity of beams tested is presented. Based on the current study, it can be concluded that the amount and initial prestress of wire rope should be limited to be above 2.5 times the minimum shear reinforcement ratio specified in ACI 318-05 and below 0.6 times its own tensile strength, respectively, to ensure the enhancement of shear capacity and ductile failure mode of the strengthened beams. A numerical analysis based on the upper-bound theorem is developed to assess the shear capacity of continuous T-beams strengthened with wire rope units. From the comparisons of measured and predicted shear capacities, a better agreement is achieved in the proposed numerical analysis than in empirical equations recommended by ACI 318-05.