Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.7
/
pp.1749-1756
/
2014
Knowledge about protein subcellular localization provides important information about protein function. This paper improves a label power-set multi-label classification for the accurate prediction of subcellular localization of proteins which simultaneously exist at multiple subcellular locations. Among multi-label classification methods, label power-set method can effectively model the correlation between subcellular locations of proteins performing certain biological function. With constrained optimization, this paper calculates combination weights which are used in the linear combination representation of a multi-label by other multi-labels. Using these weights, the prediction probabilities of multi-labels are combined to give final prediction results. Experimental results on human protein dataset show that the proposed method achieves higher performance than other prediction methods for protein subcellular localization. This shows that the proposed method can successfully enrich the prediction probability of multi-labels by exploiting the overlapping information between multi-labels.
Proceedings of the Korea Inteligent Information System Society Conference
/
2003.05a
/
pp.239-245
/
2003
15년에 걸쳐 수행된 게놈프로젝트의 완성으로 인류는 본격적으로 프로테옴 시대로 접어들게 되었다. 90년대 중반 이후 전세계적으로 다량의 단백질 구조정보 및 예측을 위한 방법들이 소개되고 있지만 각 자원들마다 저장, 관리 형식이 다를 뿐만아니라 이용하는 방법도 어렵다. 또한 결과적으로 컴퓨터기술을 이용한 단백질의 구조예측작업을 제대로 지원하기 어렵다. 본 논문에서는 개방형다중 에이전트 시스템을 통해 이를 해결하고자 했으며 특히 단백질 자원 데이터베이스를 효과적으로 이용하기 위한 에이전트 설계방법에 대하여 기술하고자 한다. 단백질 구조 예측 지원을 위해 효과적인 에이전트 내부 구조를 설계함으로써 점차로 요구되는 온톨로지 기술이나, 자동 예측 기능과 같은 다양한 요구사항들을 충족시킬 수 있을 것이다.
Proceedings of the Korea Contents Association Conference
/
2007.11a
/
pp.12-16
/
2007
The function of a protein is closely co-related with its subcellular location(s). Given a protein sequence, therefore, how to determine its subcellular location is a vitally important problem. We have developed a new prediction method for protein subcellular location(s), which is based on n-gram feature extraction and k-nearest neighbor (kNN) classification algorithm. It classifies a protein sequence to one or more subcellular compartments based on the locations of top k sequences which show the highest similarity weights against the input sequence. The similarity weight is a kind of similarity measure which is determined by comparing n-gram features between two sequences. Currently our method extract penta-grams as features of protein sequences, computes scores of the potential localization site(s) using kNN algorithm, and finally presents the locations and their associated scores. We constructed a large-scale data set of protein sequences with known subcellular locations from the SWISS-PROT database. This data set contains 51,885 entries with one or more known subcellular locations. Our method show very high prediction precision of about 93% for this data set, and compared with other method, it also showed comparable prediction improvement for a test collection used in a previous work.
Bioinformatics is a discipline to support biological experiment projects by storing, managing data arising from genome research. In can also lead the experimental design for genome function prediction and regulation. Among various approaches of the genome research, the proteomics have been drawing increasing attention since it deals with the final product of genomes, i.e., proteins, directly. This paper proposes a data mining technique to predict the structural characteristics of a given protein group, one of dominant factors of the functions of them. After explains associations among amino acid subsequences in the primary structures of proteins, which can provide important clues for determining secondary or tertiary structures of them, it defines a sequence association rule to represent the inter-subsequences. It also provides support and confidence measures, newly designed to evaluate the usefulness of sequence association rules, After is proposes a method to discover useful sequence association rules from a given protein group, it evaluates the performance of the proposed method with protein sequence data from the SWISS-PROT protein database.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.286-288
/
2004
PPI(Protein-Protein Interaction) 데이터는 생물체 내에서 서로 상호작용하는 단백질(protein)들에 대한 정보이다. 단백질 상호작용은 실제 생체 내에서 어떠한 작용이 일어나게 하는 원인이므로, 많은 생물학자들이 관심을 가지고 연구하고 있으며, 그 결과로 몇몇 데이터베이스가 만들어졌다. 이런 데이터베이스들은 다른 연구자들을 위해 데이터를 공개하고 있지만, 대부분의 데이터베이스가 탭으로 분리된 텍스트 형태로 제공한다. 하지만, 텍스트 형태의 데이터는 사람이 직관적으로 인지할 수 없기 때문에, PPI 데이터를 분석하기 쉬운 그래프 형태로 보여주는 프로그램이 필요하다. 그리고 아직 기능을 모르는 단백질이 많으므로 이를 예측하는 프로그램도 필요하다 본 논문에서는 LEDA를 이용하여 PPI 데이터를 그래프 형태로 표현하며, 이 그래프에 그래프 이론을 적용하여 단백질의 기능을 예측하는 프로그램인 Proteinca에 대해 서술한다.
Kim Soo-Jin;Joung Je-Gun;Rhee Je-Keun;Zhang Byoung-Tak
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.283-285
/
2005
단백질들이 어느 세포내 소기관에 위치하는지에 대한 지식은 그들의 기능을 예측하는데 있어서 중요한 정보를 제공한다. 하지만 실험적으로 세포내 소기관 위치를 분석하는 작업은 않은 비용과 시간을 요구한다. 따라서 지금까지 단백질의 세포내 소기관 위치 예측을 위한 다양한 계산적 방법들이 개발되었으나, 효율적인 학습 데이터의 생성에 있어서 문제점을 가지고 있다. 본 논문은 기계학습 기법을 이용하여 주요 서열 구성을 선택함으로써 예측의 성능을 최대화 하는 방법을 제안하고자 한다. 실험은 효모의 단백질의 세포 내 소기관 위치 예측에 있어서 주요 아미노산 서열들을 선택함으로써 예측의 성능을 향상시키는 결과를 보이고 있다.
A protein, which is a linear polymer of amino acids, is one of the most important bio-molecules composing biological structures and regulating bio-chemical reactions. Since the characteristics and functions of proteins are determined by their amino acid sequences in principle, protein sequence determination is the starting point of protein function study. This paper proposes a protein sequence prediction method based on data mining techniques, which can overcome the limitation of previous bio-chemical sequencing methods. After applying multiple proteases to acquire overlapped protein fragments, we can identify candidate fragment sequences by comparing fragment mass values with peptide databases. We propose a method to construct multi-partite graph and search maximal paths to determine the protein sequence by assembling proper candidate sequences. In addition, experimental results based on the SWISS-PROT database showing the validity of the proposed method is presented.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.10
/
pp.2562-2570
/
2014
One of the important hints for inferring the function of unknown proteins is the knowledge about protein subcellular localization. Recently, there are considerable researches on the prediction of subcellular localization of proteins which simultaneously exist at multiple subcellular localization. In this paper, label power-set classification is improved for the accurate prediction of multiple subcellular localization. The predicted multi-labels from the label power-set classifier are combined with their prediction probability to give the final result. To find the accurate probability estimates of multi-classes, this paper employs pair-wise comparison and error-correcting output codes frameworks. Prediction experiments on protein subcellular localization show significant performance improvement.
Proceedings of the Korean Information Science Society Conference
/
2006.10a
/
pp.17-21
/
2006
도메인 기반 단백질 상호작용 예측 기법은 지난 몇 년 동안 활발히 연구되어 왔다. 도메인 기반 접근 방법 중에서도 도메인 조합 기반 단백질 상호작용 가능성 순위 부여 기법은 예측 정확도면에서 다른 기법보다 월등한 결과를 보여주고 있다. 그러나 학습 집단을 사용하는 특징 때문에 전체 도메인 정보를 이용할 수 없는 단점이 있다. 또한, 이 시스템은 도메인 정보가 부족하여 다른 기능을 하는 단백질이라도 같은 도메인 정보를 보여주기 때문에 예측 시스템의 결점을 드러내고 있다. 도메인 조합 기반 단백질 상호작용 가능성 순위 부여 기법은 InterPro 데이터베이스의 도메인 정보를 기반으로 사용한다. InterProScan은 InterPro의 여러 멤버 데이터베이스의 정보를 기반으로 Sequence 분석을 하는 소프트웨어로써 검색 후 단계에서 찾아낸 결과들을 e-value를 기반으로 여과한다. 본 논문에서는 제시된 e-value를 조정 방법을 사용함으로써 단백질 내 도메인 패턴의 다양화와 기존 도메인 정보가 없던 단백질의 도메인을 새롭게 발견할 수 있으나 접근 방식의 한계가 존재함을 확인할 수 있었다.
KIPS Transactions on Software and Data Engineering
/
v.11
no.6
/
pp.245-254
/
2022
Proteins are the basic unit of all life activities, and understanding them is essential for studying life phenomena. Since the emergence of the machine learning methodology using artificial neural networks, many researchers have tried to predict the function of proteins using only protein sequences. Many combinations of deep learning models have been reported to academia, but the methods are different and there is no formal methodology, and they are tailored to different data, so there has never been a direct comparative analysis of which algorithms are more suitable for handling protein data. In this paper, the single model performance of each algorithm was compared and evaluated based on accuracy and speed by applying the same data to CNN, LSTM, and GRU models, which are the most frequently used representative algorithms in the convergence research field of predicting protein functions, and the final evaluation scale is presented as Micro Precision, Recall, and F1-score. The combined models CNN-LSTM and CNN-GRU models also were evaluated in the same way. Through this study, it was confirmed that the performance of LSTM as a single model is good in simple classification problems, overlapping CNN was suitable as a single model in complex classification problems, and the CNN-LSTM was relatively better as a combination model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.