• Title/Summary/Keyword: 단면 회절격자 위상

Search Result 3, Processing Time 0.017 seconds

Effect of the Reflectivity of Both Facets and the Phase of a Phase Tuning Section on the Yield Characteristics of a Multisection Index-Coupled DFB Laser (양 단면 반사율과 위상 조정 영역의 위상이 다중 영역 Index-Coupled DFB 레이저의 수율 특성에 미치는 영향)

  • Kim, Tae-Young;Ryu, Jong-In;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.548-555
    • /
    • 2006
  • We investigate the effect of the reflectivity of both facets and the phase of a phase tuning section on the self-pulsation (SP) characteristics of multisection index-coupled (IC) DFB lasers composed of two index-coupled DFB sections and a phase tuning section between them in terms of yield. In the case of weak coupling strength, as the reflectivity of both facets increases, the effect of reflected fields from both facets and the other DFB section on the mode characteristics of one DFB section increases. Thus the number of mode hoping increases and yield decreases for the variation of phases of both facets. In the case of strong coupling strength, as the reflectivity of both facets increases, the spatial hole burning effect increases, so that the yield decreases. The maximum yield and the range of the phase of a phase tuning section with yield more than 40% decrease as the facet reflectivity increases irrespective of coupling strength. As the coupling strength increases, the variation of yield for the variation of the phase of a phase tuning section increases and the variation of the phase of a phase tuning section with the maximum yield for the variation of the reflectivity of both facets decreases. The yield characteristics of the cases with the coupling strengths of 2 and 3 are better than those with the coupling strengths of 1.2 and 4.

Effect of the Reflectivity of Both Facets and the Phase of a Phase Tuning Section on the Yield Characteristics of a Multisection Complex-Coupled DFB Laser with Self-Pulsation Frequency of THz Region (양 단면 반사율과 위상 조정 영역의 위상이 Self-Pulsation 주파수가 THz 대역인 다중 영역 Complex-Coupled DFB 레이저의 수율 특성에 미치는 영향)

  • Kim, Tae-Young;Park, Jae-Woo;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.208-218
    • /
    • 2008
  • We investigate the effect in terms of yield of the reflectivity of both facets and of the phase of a phase tuning section on the self-pulsation (SP) characteristics of multisection complex-coupled (CC) DFB lasers with self-pulsation frequency of the THz region. When the grating phases on both facets of a multisection CC DFB laser are fixed as 0, the variation of SP frequency increases as the reflectivity of both facets increases, while that of SP frequency decreases as the coupling ratio (CR) and the coupling strength increase. For the coupling strength of 3, the range of the phase of a phase tuning section with yields greater than 80% decreases as the CR and the reflectivity of both facets increases. For the coupling strength of 4, the range of the phase of a phase tuning section with yields greater than 80% increases as the CR and the reflectivity of both facets increases.

Effect of the Reflectivity of Both Facets and the Phase of a Phase Tuning Section on the Yield of a Multisection Complex-Coupled DFB Laser (양 단면 반사율과 위상 조정 영역의 위상이 다중 영역 Complex-Coupled DFB 레이저의 수율 특성에 미치는 영향)

  • Kim, Tae-Young;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.323-332
    • /
    • 2007
  • The effect of the reflectivity of both facets and the phase of a phase tuning section on the self-pulsation (SP) characteristics of multisection complex-coupled (CC) DFB lasers is investigated in terms of yield. The lasers are composed of two CC DFB sections and a phase tuning section between them. As the coupling strength and the coupling ratio (CR) decrease, the effect of the reflected fields from both facets and the other DFB section on the mode characteristics of one DFB section increases, so that the yield decreases. As the facet reflectivity increases, the maximum yield and the range of the phase of a phase tuning section with yield more than 60% decrease independent of the coupling strength and CR. The yield characteristics of CR=0.2 are better than those of CR=0.1 with the same coupling strength due to the larger complex coupling effect. The case with ${\mid}{\kappa}L{\mid}=3$ and CR=0.2 shows best yield characteristics among the cases considered in this work.