• Title/Summary/Keyword: 단면 유로 유동

Search Result 42, Processing Time 0.015 seconds

Analysis of Tidal Effect in Hangang Bridge by Automatic Discharge Measurement (자동유량측정에 의한 한강대교 조석영향 분석)

  • Lee, Min-Ho;Kim, Chang-Wan;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.513-523
    • /
    • 2009
  • The measuring point of the Hangang Bridge affected by tide has some special topographic characteristics due to Nodle Island. Furthermore the submerged weirs located on the upstream and downstream. Therefore flow is separated and joined by Nodle Island. Discharge measurement at the point of the Hangang Bridge is very important, because Hangang Bridge is key station in managing the discharge and flood forecasting. In the past, it was too difficult to measure discharge in tidal conditions. HRFCO(Han River Flood Control Office) installed automatic discharge measurement facilities for solving this problem. Measuring equipments operates and measures discharge every 10 minutes at 2 points(southern and northern section close to Nodle Island), and calculates flow discharge using Chiu's velocity law(Chiu, 1988). In order to verify the results of automatic discharge measurements, manual discharge measurements were carried out by ADCP. In addition, the monthly discharge were also compared.

Structure Improvement of Preaction Valve to Reduce the Pressure Drop (압력손실을 줄이기 위한 준비작동식 유수검지장치 본체 구조 개선)

  • Hong, Seung-Tae;Jeong, Jae-Han;Nam, Jun-Seok;Kwon, Young-Kyu;Han, Chul-Su;Yoo, Seung-Joon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • The body structure of diaphragm type preaction valve was improved in order to reduce the pressure drop. The pressure drop must be kept within 20.7 kPa to pass the revised (2012. 2. 9) standard for alarm valve and preaction valve. The pressure drop test was carried out by KFI (Korea Fire Institute) standard. The pressure drop of a preaction valve was higher than that of an alarm valve. Causes for increasing the pressure drop were investigated with the fluid flow in the valve. The preaction valve had more pressure drop factors (changes in velocity and direction) compared with the alarm valve. Inner structure of the preaction valve was changed to the clapper type to remove the pressure drop factors. In 80A and 100A size of preaction valves, the pressure drop was reduced from 80.9 and 171.0 kPa to 14.4 and 14.2 kPa respectively, after the change of the structure.