• Title/Summary/Keyword: 단면 물성치 해석

Search Result 23, Processing Time 0.023 seconds

Evaluation of Structural Response of Cylindrical Structures Based on 2D Wave-Tank Test Due to Wave Impact (파랑충격력에 의한 원형실린더구조물의 구조응답평가)

  • Lee, Kangsu;Ha, Yoon-Jin;Nam, Bo Woo;Kim, Kyong-Hwan;Hong, Sa Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The wave-impact load on offshore structures can be divided into green-water and wave-slamming impact loads. These wave impact loads are known to have strong nonlinear characteristics. Although the wave impact loads are dealt with in the current classification rules in the shipping industry, their strong nonlinear characteristics are not considered in detail. Therefore, to investigate these characteristics, wave-impact loads induced by a breaking wave on a circular cylinder were analyzed. A model test was carried out to measure the wave-impact loads due to breaking waves in a two-dimensional (2D) wave tank. To generate a breaking wave, the focusing wave method was applied. A series of 2D tank tests under a horizontal wave impact was carried out to investigate the structural responses of the cylindrical structure, which were obtained from the measured model test data. According to the results, we proposed a structural damage-estimation procedure of an offshore tubular member due to a wave impact load. Furthermore, a recommended wave-impact load is suggested that considers the minimum required thickness of each member. From the experimental results, we found that the required minimum thickness is dependent on the impact pressure located in a three-dimensional space on the surface of a tubular member.

Analytical Study of Railroad Bridge for Maglev Propulsion Train with Dynamical Influence Variable (동적영향변수를 통한 자기부상열차용 철도교의 해석적 연구)

  • Yoo, Yi-Seul;Park, Won-Chan;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.532-542
    • /
    • 2018
  • Because maglev trains have a propulsion and absorption force without contact with the rails, they can drive safely at high-speed with little oscillation. Recently, test model of a maglev propulsion train was produced and operated, and has since been chosen as a national growth industry in South Korea; there have been many studies and considerable investment in these fields. This study examined the dynamic responses due to bridge-maglev train interaction and basic material to design bridges for maglev trains travelling at high-speed. Depending on the major factors affecting the dynamic effects, the scope of this study was restricted to the relationship between dynamic responses. A concrete box girder was chosen as a bridge model and injured train and rail types in domestic production were selected as the moving train load and guideway analysis model, respectively. From the analysis results, the natural frequency of a bridge for a maglev train, which has a deflection limit L/2000, was higher than those of bridges for general trains. The dynamic responses of the girder of the bridge for a maglev train showed a substantial increase in proportion to the velocities of the moving train like other general bridge cases. Maximum dynamic response of the girder is shown at a moving velocity of 240km/h and increased with increasing moving velocity of train. These results can be used to design a bridge for maglev propulsion trains and provide the basic data to confirm the validity and verification of the design code.

Practical Predictive Formulas for Residual Strengths of Fire-Damaged Normal Strength Reinforced Concrete Square Columns (화해를 입은 보통강도 철근콘크리트 정방형 기둥의 실용 잔존내력식)

  • Lee, Cha-Don;Lee, Seung-Whan;Lee, Chang-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.3-12
    • /
    • 2006
  • The behavior of concrete structures subject to fire is complex, depending on many factors. The factors usually considered in research include the level and endurance of temperatures in concrete and reinforcing bars, the mechanical properties of the steel and concrete, moisture contents, cover thickness, existence of eccentricity, and member geometry among others. Although there are a few sophisticated numerical models which can trace the effects of these important parameters on the residual capacity of reinforced concrete columns damaged by fire, practical predictive formulas are in need for rapid yet reasonable assessment in practice. The practical formulas are developed in this study for fire-damaged normal strength reinforced concrete square columns, which can approximate the predictions of those sophisticated numerical models with ease in use. The formulas take into account the effects of exposure time to fire, concrete strength, reinforcement ratio and sectional area. The developed formulas are seen to correlate with the predictions of numerical model in a reasonable agreement. Some examples are also presented in determining the residual strength, safety and additionally needed strengths for a fire-damaged reinforced concrete column.