• Title/Summary/Keyword: 단면확대

Search Result 184, Processing Time 0.027 seconds

Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations (현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석)

  • Cho, Sung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.61-73
    • /
    • 2008
  • Piles of a bridge pier are connected with the column through the pile cap (footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. Connection methods between pile heads and the pile cap are divided into two groups : rigid connections and hinge connections. Domestic design code has been specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However, some specifications prescribe that conservative results through investigations of both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which has high-quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) is unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the large diameter drilled shaft and the pile cap for Incheon Bridge which will be the longest bridge of Korea were investigated through the full modeling for rigid connection conditions.

Scale Effects and Field Applications for Continuous Intrusion Miniature Cone Penetrometer (연속관입형 소형콘관입시험기에 대한 크기효과 및 현장적용)

  • Yoon, Sungsoo;Kim, Kyu-Sun;Lee, Jin Hyung;Shin, Dong-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2359-2368
    • /
    • 2013
  • Cone penetration tests (CPTs) have been increasingly used for site characterizations. However, the site investigations using CPTs are often limited due to soil conditions depending on the cone size and capacity of the CPT system. The small sectional area of a miniature cone improves the applicability of the CPT system due to the increased capacity of the CPT system. A continuous intrusion system using a coiled rod allows fast and cost effective site investigation. In this study, the performance of the continuous intrusion miniature cone penetration test (CIMCPT) system has been evaluated by comparison tests with the standard CPT system at several construction sites in Korea. The results show that the CIMCPT system has a same performance with the CPT system and has advantages on the mobility and applicability. According to field verification tests for scale effect evaluation, the cone tip resistance evaluated by CIMCPT overestimates by 10% comparing to standard CPTs. A crawler mounted with the CIMCPT system has been implemented to improve accessibility to soft ground, and has shown improvement over the truck type CIMCPT system. Therefore, the improved CIMCPT system can be utilized as a cost effective and highly reliable soil investigation methodology to detect the depth of soft ground and to evaluate soil classification.

The Evaluation of Seepage Characteristics in Reinforced Embankment Constructed on Low Permeable Clay Layer Through Centrifuge Model Tests (원심모형실험을 활용한 투수성이 낮은 기초지반에 위치한 보축 제방에서의 침투 거동)

  • Jin, Seok-Woo;Choo, Yun-Wook;Kim, Young-Muk;Kim, Dong-Soo;Im, Eun-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.27-39
    • /
    • 2012
  • In this paper, a series of centrifuge tests were performed to evaluate the seepage characteristic of reinforced embankment. The centrifuge models simulated an actual embankment reinforced by enlargement of levee cross-section. The centrifuge models have the same conditions except the locations of enlargement with low permeable material : water-side and land-side. In addition, the prototype embankment is constructed on low permeable clay layer. In the case of water-side reinforcement, the reinforced zone makes water head down and the saturated zone of embankment propagates slowly. In the case of land-side reinforcement embankment, the saturated zone enlarged relatively faster but the amount of exit water at land-side toe was very small because of the land-side reinforcement zone. The low permeable clay foundation layer was being continuously saturated by the inflow from the embankment as well as the uplift flow from the permeable layer induced by the excess pore water pressure.

Hydraulic Stability and Wave Transmit Property of Stacked Geotextile Tube by Hydraulic Model Test (수리모형시험을 통한 다단식 지오텍스타일 튜브의 안정성 및 파랑 전달특성에 관한 연구)

  • Oh Young In;Shin Eun Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2005
  • Geotextile have been used for the past 30 years for various types of containers, such as small sandbag, 3-D fabric forms and aggregate filled gabion etc. While they are mainly used for flood and water control, they are also used against beach erosion fir shore protection. Especially, large-sized geotextile tube structures are used in various innovative coastal systems involving breakwaters. This paper presents the hydrodynamic behavior of geotextile tubes based on the results of hydraulic model tests. These tube are generally about 1.0 m to 2.0 m in diameter, thou띤 they can be sized for any application. The tubes can be used solely, or stacked to add greater height and usability. Stacked geotextile tubes will be created by adding the height necessary for some breakwaters and embankment, therefore increasing the usability of geotextile tubes. The hydraulic model test was conducted as structural condition and wave conditions. Structural condition is installation direction to the wave (perpendicular and 45$^{circ}$$), and wave condition is varied with the significant wave height ranging from 3.0 m to 6.0 m. Compared with previous test result, the stacked geotextile tube is more stable against wave attack than single tube. Also, the case of none-water depth above crest is more stable than 0.5H of water depth above crest. The incline installed stacked tube is more effective for wave adsorption.

Numerical Analysis for Dynamic Characteristics of Next-Generation High-Speed Railway Bridge (차세대 고속철 통과 교량의 동적특성에 대한 수치해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Yi, Seong-Tae;Jeong, Byeong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • To take into account of the increasing speed of next generation high-speed trains, a new design code for the traffic safety of railway bridges is required. To solve dynamic responses of the bridge, this research offers a numerical analyses of PSC (Pre-stressed Concrete) box girder bridge, which is most representative of all the bridges on Gyungbu high-speed train line. This model takes into account of the inertial mass forces by the 38-degree-of-freedom and interaction forces as well as track irregularities. Our numerical analyses analyze the maximum vertical deflection and DAF (Dynamic Amplification Factor) between simple span and two-span continuous bridges to show the dynamic stability of the bridge. The third-order polynomial regression equations we use predict the maximum vertical deflections depending on varying running speeds of the train. We also compare the vertical deflections at several cross-sectional positions to check the influence of running speeds and the maximum irregularity at a longitudinal level. Moreover, our model analyzes the influence lines of vertical deflection accelerations of the bridge to evaluate traffic safety.

Study on Applicability of Asymmetry V-Cut method in Underground Mine (비대칭 V-cut의 갱내 광산에 대한 적용성 연구)

  • Kim, Jung-Gyu;Jung, Seung-Won;Kim, Jun-Ha;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.520-533
    • /
    • 2021
  • It is necessary to increase the blasting efficiency in order to minimize the economic loss caused when the excavation cross section is reduced due to the stability problem of underground mining development, and for this, a new blasting design is proposed. In this study, the blasting efficiency of the general design in the field, the suggestion designI, which added two columns to production blasting, and the suggestion design II, which added one column to create asymmetry, is compared. Advance rate and fragmentation were selected as the evaluation index of the blasting efficiency. In the case of advance rate, compared to the normal, the suggestionI improved by 6.07% and the suggestionII improved by 4.65%. In the case of fragmentation, based on P80, compared to the normal, the suggestionI reduced about 58% and the suggestionII was about 47%. Accoording to the evaluation index, the suggestion designI shows better blasting efficiency than the suggestion designII. But considering the additional work time and cost required for the suggestion designI due to the insignificant difference in the evaluation index results, the asymmetry V-cut, the suggestion designII, is judged to be a more suitable blasting design for the site.

Constructability Evaluation of Seismic Mechanical Splice for Slurry Wall Joint Consisting of Steel Tube and Headed Bars (슬러리월의 내진설계를 위한 강재각관과 확대머리 철근으로 구성된 기계적 이음의 시공성 평가)

  • Park, Soon-Jeon;Kim, Dae-Young;Lim, In-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • South Korea has recently witnessed an increasing number of seismic events, leading to a surge in studies focusing on seismic earth pressures, as well as the attributes of geological layers and ground where foundations are established. Consequently, earthquake-resistant design has become imperative to ensure the safety of subterranean structures. The slurry wall method, due to its superior wall rigidity, excellent water resistance, and minimal noise and vibration, is often employed in constructing high-rise buildings in urban areas. However, given the separation between panels that constitute the wall, slurry walls possess limited resistance to seismic loads in the longitudinal direction. As a solution, several studies have probed into the possibility of interconnecting slurry wall panels to augment their seismic performance. In this research, we developed and evaluated a method for linking slurry wall panels using mechanical joints, including concrete-confined steel pipes and headed bars, through mock-up tests. We also assessed the constructability of the suggested method and compared it with other analogous methods. Any challenges identified during the mock-up test were discussed to guide future research in resolving them. The results of this study aid in enhancing the seismic performance of slurry walls through the development of an interconnected panel method. Further research can build on these findings to address the identified issues and improve the efficacy and reliability of the proposed method.

Application of Direct Inelastic Design for Steel Structures (철골조를 위한 직접비탄성설계법의 적용)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.103-113
    • /
    • 2005
  • In the present study, the Direct Inelastic Design (DID) for steel structures developed in the previous study was improved to expand it applicability. The proposed design method can perform inelastic designs that address the design characteristics of steel structures: Group member design, discrete member sizes, variation of moment-carrying capacity according to axial force, connection types, and multiple design criteria and load conditions. The design procedure for the proposed method was established, and a computer program incorporating the design procedure was developed. The design results from the conventional elastic method and the DID were compared and verified by the existing computer program for nonlinear analysis. Compared with the conventional elastic design, the DID addressing the inelastic behavior reduced the total weight of steel members and enhanced the deformability of the structure. The proposed design method is convenient because it can directly perform inelastic design by using linear analysis for secant stiffness. Also, it can achieve structural safety and economical design by controlling deformations of the plastic hinges.

Application of Non-Destructive Testing Techniques to the Evaluation of Integrity of Drilled Shaft (비파괴시험을 이용한 현장타설말뚝의 건전도 평가에 관한 연구)

  • Chae, Jong-Hoon;Yu, Jae-Myung;Kim, Dae-Kyu;Lee, Woo-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.5-14
    • /
    • 2001
  • The NDT(Non-Destructive Testing) technique, detecting defects without damaging foundations, has, lately, been a matter of concern. In this study, the applicability of the borehole methods(CSL, CT, PS) and the surface reflection methods(SE, IR) to the evaluation of integrity of drilled shaft was investigated through field test. Ten drilled shafts, 0.4 m in diameter and 7.0 m long each, were constructed, one shaft with no defect and nine shafts intentionally with the combination of the common defects such as soft bottom, necking, bulging, cave-in, and/or weak concrete. Analysing each NDP test result on the constructed drilled shafts, an optimum combination of the NDP methods as well as the applicability of each NDP method to detecting defects of drilled shaft have been investigated.

  • PDF

Instability Analysis of Road Landfill Slope during Heavy Rainfall (호우시 도로성토사면의 사면불안정 분석)

  • Kim, Young-Muk;Park, Hyang-Keun;Chol, Mun-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.41-50
    • /
    • 2004
  • The study of seepage behavior is very important to slope stability of road landfill for heavy rainfall season. This study is done to propose more stable of road landfill based on analysis of seepage behavior and slope stability for some cases of road landfill. The selected sections of collapsed road landfill are most general case of road landfill, a case is landfill on the ground area and another case is on the slope area. The results of this study is summarized as follows. It is founded that the road landfill on the ground area is increased saturation region due to rainfall infiltration, and the seepage behavior of road landfill is solved by theory of unsaturated flow. The road landfill is more unstable due to rainfall infiltration at the slope surface, especially during heavy rainfall. The case of road landfill on the slope area is analyzed in consideration of slope surface infiltration, and it is founded that the slope instability is increased because of rainfall infiltration. The drain layer located on the original ground which made by more permeable materials could be good action of slope stability in the case of road landfill on the slope area.

  • PDF