• Title/Summary/Keyword: 단면실험

Search Result 2,038, Processing Time 0.026 seconds

Failure Behavior of Non-seismic RC Column with aspect ratio of 4.0 (형상비 4.0인 비내진 철근콘크리트 기둥의 파괴거동)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.59-66
    • /
    • 2020
  • Two octagonal RC bridge columns of small scale model were tested under cyclic lateral load with constant axial load. One in two specimens was solid cross section, the other was hollow cross section. The volumetric ratio of transverse spiral hoop of all specimens is 0.00206. The columns showed flexure-shear failure. Failure behavior and seismic performance were investigated. The test results showed that the structural performance of the hollow specimen such as initial crack pattern, initial stiffness, and energy dissipation performance was comparable to that of the solid specimen, but the lateral strength, ultimate displacement, energy dissipation performance of hollow specimen noticeably decreased after drift ratio of 3%.

An Experimental And Theoretical Study on the Corrugated Water-Trickle Collector (파형단면을 가진 유하식 집열기의 이론 및 실험 연구)

  • Lee, Jong-Ho;Chung, Mo;Park, Won-Hoon
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.42-52
    • /
    • 1987
  • 파형 단면을 가진 유하식 집열기의 이론 및 실험 결과로서 유량, 각도등 집열성능에 미치는 영향등이 고려되었다. 입구 온도와 출구온도 차이가 적을 경우에는 이론과 실험치가 잘 맞으나 온도차이가 많을 경우 혹은 입구온도가 높을 때에는 투과체안에 생기는 결로 및 수증기의 영향으로 편차가 커진다. 개방회로와 폐쇄회로의 경우를 구분하여 실험되었는데 개방회로의 경우 효율은 약간 저하되지만 전반적인 성능은 폐쇄회로와 같은 경향을 나타내었다. 개방회로는 과열을 막는 방편으로 이용될 수 있다.

  • PDF

Block Shear Rupture and Shear Lag of Single angle in Tension Joint -Single angle with three or four bolt connection- (단일 ㄱ형강의 블록전단 파단 및 전단지체 현상 -고력볼트 3개 또는 4개로 접합된 단일 ㄱ형강-)

  • Lee, Hyang Ha;Shim, Hyun Ju;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.565-574
    • /
    • 2004
  • The purpose of this paper was to investigate the block shear and the fracture in the net section, according to AISC Specifications, by analysing the shear lag effect in the block shear rupture of the single angle with three or four bolt connection. Specimen with three or four bolt connections showed that failure generally went from block shear with some net section failures to classic net section failures. From the test results, showed that the connection length, the thickness of angle, and reduction factor, which affect the block shear rupture, were investigated. According to the test results, it is suggested that the calculation of the net section rupture capacity by using the reduction factor of U, that was suggested by Kulak, is needed.

Displacement Dependency and Capacity Evaluation According to the Cross-Sectional Shape and Aspect Ratio of Steel Rod Dampers (강봉댐퍼의 단면형상과 형상비에 따른 변위의존성 및 성능 평가)

  • Hyun-Ho Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.89-96
    • /
    • 2023
  • In this study, the displacement dependence, strength, and energy dissipation capacity of the steel rod damper were evaluated. The test variables were cross-sectional shape and aspect ratio. The 6th test specimens were made for performance test. From the test results, it was evaluated that the displacement dependence conditions of design code were satisfied in all specimens. And the strength effect according to the cross-sectional shape was minimal. As a result, the strength and energy dissipation capacity of the aspect ratio of 13.7 were evaluated as excellent.

Elasto-Magnetic Sensors-based Cross-sectional Loss Monitoring of Steel Cables (E/M 센서를 이용한 케이블 단면 손실 모니터링)

  • Kim, Ju Won;Park, Seunghee;Lee, Jong Jae;Yim, Jinsuk
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.92-92
    • /
    • 2011
  • 최근 건설기술의 발전과 함께 강재 케이블을 이용하는 시설물의 시공이 점점 증가하는 추세이다. 특히 현수교, 사장교와 같은 초장대 교량에 사용되는 케이블은 주거더 및 상판에 의한 하중의 대부분을 지지하는 핵심부재이다. 하지만 이러한 케이블 부재는 부식, 파단 등으로 인한 단면손실이 발생할 수 있고, 이로 인한 손상부의 응력집중으로 인해 시설물 전체의 붕괴로 이어질 수 있는 위험성을 가진다. 따라서 조기에 단면손실을 찾아 사고를 미연에 방지할 수 있는 강재 케이블 비파괴 검사 기술기반의 건전성 모니터링이 필수적이다. 이러한 효율적인 건전성 모니터링을 위해 스마트 센서를 활용한 연구가 활발히 이루어지고 있는데, 그중 대표적인 스마트 센서중 하나인 마그네틱 센서는 높은 신뢰도와 어디에나 적용 가능한 재현성 때문에 구조물 건전성 평가에 적용하기 유용한 기술로 그 적용범위가 선박, 항공등으로 점점 넓어지고 있는 추세이다. 마그네틱 센서는 그 적용대상에 따라 다양한 마그네틱 특성을 활용할 수 있는데, 최근에는 투자율 계측을 통해 케이블의 장력 측정이 가능한 Elasto-Magnetic 센서(E/M 센서)가 개발되었고 그 활용성에 대한 연구가 이뤄지고 있다. 이에 본 연구에서는 E/M 센서를 이용한 강재 케이블 모니터링 기술을 제안하고자 한다. E/M 센서는 본래 케이블의 장력측정을 위해 개발되었지만 본 연구에서는 강재 케이블 부재의 단면손실 검색을 위해 적용하였다. 제안된 기술의 실험적 검증을 위해 E/M 센서를 이용하여 4가지의 다른 직경을 가지는 강봉시편을 E/M 센서헤드의 1차 코일을 통해 자화시키고, 각각의 직경에서 출력전압을 2차 코일을 이용하여 계측하였다. 그 결과 강봉의 직경이 감소함에 따라 출력 전압이 감소함을 보였다. 반복실험을 통해 해상도 및 선형성이 확보되는 최적의 입력전압과 출력전압의 워킹포인트를 선정하였고, 선정된 조건에서 강봉시편을 일정 간격으로 스캔한 결과 단면감소에 따른 선형적인 출력전압 감소와 동시에 단면 변화 지점에서는 추세선에서 크게 벗어난 출력전압 계측값을 나타내었다. 본 실험을 통해 제안된 E/M 센서를 이용한 강재 케이블 모니터링 기술의 유용성 및 적용가능성을 확인할 수 있었다.

  • PDF

A Study on the Hydraulic Characteristics in a Compound Channel (복단면(複斷面) 수로(水路)에서의 수리학적(水理學的) 특성(特性)에 관한 연구(研究))

  • Jeong, Dong Guk;Ahn, Soo Hahn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.25-33
    • /
    • 1986
  • Natural river channels usually have a deep section and one or two floodplains, which is called a compound channel. As the general method in the compound channel overestimates the discharge capacity, the momentum transfer due to interaction between the main channel flow and flow over its floodplain must be considered. Scale model experiments are performed for the rectangular main channel with an asymmetrical floodplain. Firstly, velocities are measured at various section grids. Secondary, boundary shear stresses are calculated from velocity distributions. Lastly, in order to determine the apparent shear force, the shear stress distributions are integrated along the wetted perimeter for the full cross-section and equated to the total weight force in the flow direction. The hydraulic characteristics in a compound channel are closely examined with the scales of length, velocity, boundary shear stress, and apparent shear force which are described with the various relationships.

  • PDF

Effect of BFRP Wrapping on Seismic Behavior of Rectangular RC Columns (BFRP 보강이 직사각형 단면 철근콘크리트 기둥의 지진거동에 미치는 영향)

  • Lee, Hyerin;Cho, Junghyun;Lee, Seung-Geon;Lee, Su-Hyung;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.153-160
    • /
    • 2020
  • Columns are one of the most critical parts of a structural system subjected to earthquake excitations. In this regard, extensive experimental studies have been conducted to evaluate the effect of fiber reinforced polymer (FRP) wrapping on the seismic performance of reinforced concrete (RC) columns. Among them, many studies focused on the behavior of circular or square RC columns strengthened with CFRP or GFRP sheets. Since the cross-sectional shape affects confinement by FRP wrapping, its strengthening effect and final damage pattern may differ with shapes. In this study, a series of cyclic tests was conducted to investigate the seismic behavior of rectangular reinforced concrete columns strengthened with basalt-based fiber reinforced polymer (BFRP) sheets and composite fiber panels. The result shows that the effect of strengthening is not significant, and it implies a little increase of confinement by BFRP sheets and composite fiber panels, which is considered partly due to the cross-sectional shape of the columns.

Punching Shear Performance Evaluation of Foundation by Enforcement-length of Shear Head Reinforcement (전단 보강재의 보강길이에 따른 기초판의 뚫림전단 성능평가)

  • Lee, Yong-Jae;Yi, Waon-Ho;Yang, Won-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.60-68
    • /
    • 2017
  • This study was made to examine the motion characteristics according to the reinforcement of the reinforcement length and stiffener reinforcement for shear reinforcement to the foundation structure reinforced with shear reinforcement steel plate. Experimental study was made after specimen was installed on the ground as the same as in the practical site. Reinforcement lengths of the steel for shear reinforcement are divided into 1,000 mm, 1,200 mm and 1,400 mm in the specimen and as for reinforcement method of the stiffener, 4 stiffeners with interval of 100mm reinforced with the same materials as the shear reinforcement were manufactured for the experiment. Considering result of the experiment, it is expressed that no effect of the stiffener reinforcement was found and regarding the reinforcement length of shear reinforcement material the crossed point of the two converted lines of the value that the shear force is expressed in the bearing power in the expanded dangerous section and the value that the shear capacity receivable by the reinforcement materials in the dangerous section is proposed as effective reinforcement length.

Inverse Reconstruction of Sectional Area in Nonuniform Ducts by Using the Acoustical Measurement (음파를 이용한 덕트 내 불균일 단면적의 역문제적 재구성)

  • 김회전;이정권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.9-16
    • /
    • 2001
  • This paper deals with the inverse reconstruction of sectional area in nonuniform ducts by using the acoustical measurement. There have been many theoretical and experimental studies on the duct area reconstruction. In this research, the method using the impulse response function and area reconstruction algorithm was employed because of its mathematical and experimental simplicity. Based on the study results on the drawback of conventional impulse excitation method, a new measurement method is proposed, that uses the random noise source and the discrete inverse Fourier transform. It is found that the reconstruction errors of the present method is smaller than the conventional method. A random error analysis is performed in order to investigate the causes of reconstruction error and to clarify the applicable data range for area reconstruction.

  • PDF

Experimental Studies on the Effect of Various Design Parameters on Thermal Behaviors of High Strength Concrete Columns under High Temperatures (다양한 설계변수에 따른 고강도 콘크리트 기둥의 열적 거동 분석을 위한 실험 연구)

  • Shin, Yeong-Soo;Park, Jee-Eun;Mun, Ji-Young;Kim, Hee-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.377-384
    • /
    • 2011
  • Although concrete is considered as fire proof materials, high strength concrete shows severe material and structural damages when exposed to fire. To understand such damages in high strength concrete structures, the effects of various design parameters and fire condition on the thermal behaviors of high strength concrete structures are investigated in this study. In order to achieve this goal, fire tests are performed on high strength concrete columns with different fire conditions and design parameters including cross sectional area, cover thickness, and reinforcement alignment. To investigate thermal behaviors, temperature distributions and amount of spalling are measured. In overall, the columns show rapidly increasing inner temperatures between 30~60 mins of the fire tests due to spalling. In detail, the higher temperature distributions are observed from the columns with the larger cross section and less cover thickness. Moreover, among the columns with same reinforcing ratio, larger number of reinforcements with the smaller diameter causes the higher temperature distribution. The findings from the experimental study allow not only understanding of thermal behaviors of high strength concrete columns under fire, but also guidance in revising fire safety design.