• Title/Summary/Keyword: 단면설계

Search Result 1,905, Processing Time 0.03 seconds

Structural Design Optimization of Lightweight Offshore Helidecks Using a Genetic Algorithm and AISC Standard Sections (유전 알고리듬 및 AISC 표준 단면을 사용한 경량화 헬리데크 구조 최적설계)

  • Sim, Kichan;Kim, Byungmo;Kim, Chanyeong;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.383-390
    • /
    • 2019
  • A helideck is one of the essential structures in offshore platforms for the transportation of goods and operating personnel between land and offshore sites. As such, it should be carefully designed and installed for the safety of the offshore platform. In this study, a structural design optimization method for a lightweight offshore helideck is developed based on a genetic algorithm and an attainable design set concept. A helideck consists of several types of structural members such as plates, girders, stiffeners, trusses, and support elements, and the dimensions of these members are typically pre-defined by manufacturers. Therefore, design sets are defined by collecting the standard section data for these members from the American Institute of Steel Construction (AISC), and integer section labels are assigned as design variables in the genetic algorithm. The objective is to minimize the total weight of the offshore helideck while satisfying the maximum allowable stress criterion under various loading conditions including self-weight, wind direction, landing position, and landing condition. In addition, the unity check process is also utilized for additional verification of structural safety against buckling failure of the helideck.

Design Comparison of Composite Girder Bridges Designed by ASD and LRFD Methods (허용응력설계법 및 하중저항계수설계법에 의한 강합성 거더교 설계결과 비교)

  • Cho, Eun-Young;Shin, Dong-Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.447-456
    • /
    • 2009
  • The design comparison and flexural reliability analysis of continuous span composite plate girder bridges are performed. The girders are designed by the methods of allowable stress design (ASD) and load and resistance factor design (LRFD). For the LRFD design, the design specification under development mainly by KBRC, based on AASHTO-LRFD specification in case of steel structures, is applied with the newly proposed design live load which has been developed by analyzing domestic traffic statistics from highways and local roads. For the ASD based design, the current KHBDC code with DB-24 and DL-24 live loads is used. The longest span length for the 3-span continuous bridges with span arrangement ratio of 4:5:4 is assumed to be from 30 m to 80 m. The amount of steel, performance ratios, and governing design factors for the sections designed by the ASD and LRFD methods are compared. In the reliability analysis for the flexural failure of the sections designed by two methods, the statistical properties on flexural resistance based on the yield strength statistics for over 16,000 domestic structural steel samples are applied.

Optimum Design of Midship Section by Artificial Neural Network (뉴랄 네트워크에 의한 선체 중앙단면 최적구조설계)

  • Yang, Y.S.;Moon, S.H.;Kim, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.44-55
    • /
    • 1996
  • Since the use of computer for the ship structural design around mid 1960``s, specially many researches on the midship section optimum design were carried out from 1980. For a rule-based optimum design case, there has been a problem of handling a discrete design variable such as plate thickness for a practical use. To deal with the discrete design variable problems and to develop an effective new method using artificial neural network for the ship structural design applications, Neuro-Optimizer combing Hopfield Neural Network and other Simulated Annealing is proposed as a new optimization method and then applied to the fundamental skeletal structures and Midship section of Tanker. From the numerical results, it is confirmed that Neuro-Optimizer could be used effectively as a new optimization method for the structural design.

  • PDF

tudy on Seismic Design of Buckling Restrained Braced Frame System Using Inverse Stiffness Method (역강성 설계법을 이용한 비좌굴 가새골조시스템의 내진설계에 관한 연구)

  • Kim, Se-Hyun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.106-114
    • /
    • 2006
  • This study proposed the applicability of inverse stiffness method on the seismic design for steel frame with buckling restrained braces and the design results were compared with former research's. The concept of this method is simple and efficient. Furthermore it is able to reflect the high mode's effect and control the ductility factors of each story individually. Design results using the proposed method showed that according to increase of the given target drift, the areas of brace generally decreased but partially increased in some stories of the tall structure with very large ductility. And the post yield stiffness ratio's variation had more effect on the design results in the small post yield stiffness ratio.

Shape Scheme and Size Discrete Optimum Design of Plane Steel Trusses Using Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 평면 철골트러스의 형상계획 및 단면 이산화 최적설계)

  • Kim, Soo-Won;Yuh, Baeg-Youh;Park, Choon-Wok;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.89-97
    • /
    • 2004
  • The objective of this study is the development of a scheme and discrete optimum design algorithm, which is based on the genetic algorithm. The algorithm can perform both scheme and size optimum designs of plane trusses. The developed Scheme genetic algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. However, its application to the complicated structures has been limited because of the extreme time need for a number of structural analyses. This study solves the problem by introducing the size & scheme genetic algorithm operators into the genetic algorithm. The genetic process virtually takes no time. However, the evolutionary process requires a tremendous amount of time for a number of structural analyses. Therefore, the application of the genetic algorithm to the complicated structures is extremely difficult, if not impossible. The scheme genetic algorithm operators was introduced to overcome the problem and to complement the evolutionary process. It is very efficient in the approximate analyses and scheme and size optimization of plane trusses structures and considerably reduces structural analysis time. Scheme and size discrete optimum combined into the genetic algorithm is what makes the practical discrete optimum design of plane fusses structures possible. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to various optimum design examples: plane pratt, howe and warren truss.

  • PDF

H-형상 단면의 축대칭 부품에 대한 열간단조 공정설계 및 금형설계

  • 최재찬;김병민;김성원;김호관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.18-22
    • /
    • 1993
  • 본 논문은 H-형상 단면의 측대칭 부품에대하여 컴퓨터에 의한 열간단조 공정설계 및 금형설계 시스템을 개발하고 슬래브 해석법을 이용한 단조 시뮬레이션 프로그램을 통하여 단조하중을 예측하고자 한다. 이 시 스템을 수행하기 위한 컴퓨터 프로그램의 입력사항은 축대칭 H-형상 단조품 단면의 기하학적 형상, 소재비 도는 단조비, 마찰조건, 램속도, 다조온도, 소재 및 다이 재료명 등이다. 시스템의 실행 후 얻은 결과들은 실제 산업 현장의 요구에 맞추어 빌렛 형상, 예비 성형체, 그리고 최종다이 및 예비성형 다이가 도면화 되 어 출력된다. 수행된 출력결과가 사용자의 요구와 일치하지 않을 경우 입력사항을 변경하여 재 설계할 수 있도록 되어 있다. 그리고 본 시스템은 크게 세개의 모듈 즉, 공정설계 모듈, 시뮬레이션 모듈 등으로 구성되어 있고 각각의 모듈은 독립적으로 또는 통합하여 수행된다.

Design Formula for Launching Nose of ILM Bridge Considering the Interaction Behavior with Superstructure Sections (상부단면과의 상호작용을 고려한 ILM 교량용 압출추진코의 최적화 설계식)

  • Lee, Hwan-Woo;Jang, Jae-Youp
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • In constructing ILM(Incremental Launching Method) bridges, a launching nose is generally used in order to absorb temporary stress occurring during launching. The sectional forces of superstructure of ILM bridges, which occurs during launching, varies significantly according to the length, weight and stiffness of the launching nose. Thus in order to guarantee the safety of section of ILM bridges, the change of stress according to interaction behavior between launching nose and superstructure should be considered. However, the span division and span length are often decided based on previous cases in practice. It makes the design sections of launching nose are similar in spite of different projects. The designer's anxiety to optimize the launching nose to affect the optimum design of superstructure is also weak. In this study, an design formular to optimize the nose is proposed by using the analysis formular of nose-deck interaction and the design level of ILM bridges constructed on 00 Expressway is examined. According to the result of this study, the proposed design formulas are expected to make a significant contribution to section design that is economically efficient and at the same time guarantees the safety of the superstructure and launching noses of ILM bridges regardless of span length.

Flexural Stiffness Effects on Constant Depth PC Segmental Bridge Constructed by Free Cantilever Method (균일한 단면 높이를 갖고 FCM 공법으로 시공되는 PC 세그멘탈교량의 거동에 대한 휨강성의 영향)

  • Lee, Jae Hoon;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.1-11
    • /
    • 1993
  • Precast/Prestressed concrete segmental bridges with moderate range of span length normally have a constant section height for economic segment manufacturing. Inside sectional dimension is often controlled for design of non-prismatic section between supports when variable stiffness is required. It is usual, in the preliminary design stage, to adopt trial bridge sections by past experience or by approximately estimated member forces. Three bridge models of different member stiffness have been selected to investigate flexural stiffness effects on member forces for preliminary design stage. The selected bridge stiffness has been determined by the flexibility index from review of the practically usable sections.

  • PDF

Moment Capacity of Reinforced Concrete Members Strengthened with FRP (FRP 보강 철근콘크리트 부재의 휨모멘트)

  • Cho, Baik-Soon;Kim, Seong-Do;Back, Sung-Yong;Choi, Eun-Soo;Choi, Yong-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.315-323
    • /
    • 2010
  • Five concrete compressive stress-strain models have been analyzed to check the validity of the strength method for determining the nominal moment of strengthened members using commercially available computer language. The results show that the concrete stress-strain models do not influence on the flexural analysis. The moment of a strengthened member obtained from the flexural analysis at concrete compressive strain reaching 0.003 is well agreed with nominal moment using the strength method. The flexural analysis results show that when the steel reinforcement, FRP ratio, FRP failure strain, and concrete failure compressive strain are relatively lower, the strength method overestimates the flexural capacity of the strengthened members.

Seismic Characteristics of Hollow Rectangular Sectional Piers with Reduced Lateral Reinforcements (횡방향철근이 감소된 중공사각단면 교각의 내진거동 특성)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.51-65
    • /
    • 2009
  • The seismic design concept of RC bridges is to attain the proper ductility of piers, yielding a ductile failure mechanism. Therefore, seismic design force for moment is determined by introducing a response modification factor (R), and lateral reinforcements to confine core concrete are specified in the current design code. However, these design provisions have irrationality, which results in excessive amounts of lateral reinforcements for columns in Korea, which are generally designed with large sections. To improve on these provisions, a new design method based on seismic performance has been proposed. To apply this to hollow sectional columns, however, further investigations and improvements must be performed, due to the different seismic behaviors and confinement effects. In this study, hollow sectional columns with different lap-splice of longitudinal bars and lateral reinforcements have been tested. Seismic characteristics and performance were investigated quantitatively. These research results can be used to derive a performance-based design for hollow sectional columns.